
CMSC 425 Dave Mount & Roger Eastman

CMSC 425: Lecture 19
Motion Planning: Multiple Agent Motion

Reading: Today’s material is drawn from a variety of sources. The material on flocking is based in
part on C. W. Reynolds, “Flocks, Herds, and Schools: A Distributed Behavioral Model,” Computer
Graphics, 21, 25–34, 1987. The material on pursuit and evasion is taken from a number of random
sources including S. M. Lavalle, Planning Algorithms, Cambridge University Press, 2006.

Recap: In the previous lectures, we have discussed techniques for computing the motion of a single
agent. Today we will discuss techniques for planning and coordinating the motion of multiple
agents. In particular, we will discuss three aspects of this problem:

Flocking behavior: Where all agents are moving as a unit

Crowd behavior: Where a number of agents, each with their own desired destination, are
to move without colliding with each other.

Flocking Behavior: Flocking refers to the motion that arises when a group of agents adopt a
decentralized motion strategy that is designed to hold the group together (and to perhaps
achieve other objectives, such as evading a threat). Such behavior is exemplified by the
motion of groups animals, such as birds, fish, and insects (see Fig. 1).

Fig. 1: An example of complex emergent behavior in flocking.

In contrast to full crowd simulation, where each agent may have its own agenda, in flocking
it is assumed that the agents are homogeneous, that is, they are all applying essentially the
same motion update algorithm. The only thing that distinguishes one agent from the next
is their position relative to the other agents in the system. It is quite remarkable that the
complex formations formed by flocking birds or schooling behavior in fish can arise in a system
in which each creature is following (presumably) a very simple algorithm. The apparently
spontaneous generation of complex behavior from the simple actions of a large collection of
dynamic entities is called emergent behavior. While the techniques that implement flocking
behavior do not involve very sophisticated models of intelligence, variants of this method
can be applied to simple forms of crowd motion in games, such as a crowd of people milling
around in a large area or pedestrians strolling up and down a sidewalk.

Lecture 19 1 Spring 2018

CMSC 425 Dave Mount & Roger Eastman

Boids: One of the earliest models and perhaps the best-known model for flocking behavior was
given by C. W. Reynolds from 1986 with his work on “boids.” (The term is an intentional
misspelling of “bird.”) In this system, each agent (or boid) determines its motion based on a
combination of four simple rules:

Separation: Each boid wishes to avoid collisions with other nearby boids. To achieve this,
each boid generates a repulsive potential field whose radius of influence extends to its
immediate neighborhood (see Fig. 2(a)). Whenever another boid gets too close, the force
from this field will tend to push them apart.

(a) (b) (c) (d)

Separation Alignment Avoidance Cohesion

Fig. 2: Forces that control flocking behavior.

Alignment: Each boid’s direction of flight is aligned with nearby boids (see Fig. 2(b)). Thus,
local clusters of boids will tend to point in the same direction and hence will tend to fly
in the same direction. To implement this, we sample the heading vectors for the boids
in our immediate neighborhood, and compute their average, which we normalize to unit
length. We then apply a torque (turning force) to the current boid that pushes it in the
direction of this average.

Avoidance: Each boid will avoid colliding with fixed obstacles in the scene. At a simplest
level, we might imagine that each fixed obstacle generates a repulsive potential field (see
Fig. 2(c)). As a boid approaches the object, this repulsive field will tend to cause the
boid to deflect its flight path, thus avoiding a collision. The strength of this force grows
very rapidly as the boid comes closere to the obstacle. Avoidance can also be applied to
predators, which may attack the flock. (It has been theorized that the darting behavior
of fish in a school away from a shark has evolved through natural selection, since the
sudden chaotic motion of many fish can confuse the predator.)

Cohesion: Effects such as avoidance can cause the flock to break up into smaller subflocks.
To simulate the flocks tendency to regroup, there is a force that tends to draw each
boid towards the center of mass of the flock (see Fig. 2(d)). (In accurate simulations of
flocking motion, a boid cannot know exactly where the center of mass is. In general the
center of attraction will be some point that the boid perceives being the center of the
flock.)

Physics-Based Motion: Before getting into the details of how to implement a boids-based motion

Lecture 19 2 Spring 2018

CMSC 425 Dave Mount & Roger Eastman

system, it is useful to see how we can apply physical forces to induce a motion-planning system.
We discussed this briefly in the context of potential-field methods in an earlier lecture. Here,
we consider it in the context of a computational process called numerical physical integration.

Let us assume we have n boids, indexed from 1 to n. We also assume that time is discretized
into small time units. Let ∆ denote the time step. (In Unity, this is the time step used for
FixedUpdate and might be chosen to be 1/10 of a second.) For example, we start at time
t = t0 = 0, and the jth time step is tj = j∆. Consider the state of the system at time
t. For boid i, let pi(t) denote this boid’s current position. This could be represented as
the homogeneous coordinates of a point in affine space. Let ~vi(t) denote this boid’s current
velocity. This could be represented as the homogeneous coordinates of a vector in affine space.

As mentioned above, various forces will be evaluated for each boid at each time step in order
to “nudge” the boid into its desired new velocity. Each force is represented as a vector, and
the sum of these forces will result in an aggregate force vector, denoted ~Fi(t). (For example,
this aggregate force will tend to push the boid away from other boids, turn it in the direction
that its neighbors are flying, draw it away from obstacles and threats, and pull it back towards
the center of the flock.)

Recall from basic physics, the rule f = ma (force is mass times acceleration). In our context,
we interpret this as a = f/m (acceleration is force divided by mass). Let mi denote the mass
of the ith boid. (In most systems, they all have the same mass, so this is just a constant
“fudge factor” that is applied to all the update computations.) The acceleration of the ith
boid at time t is given as a vector ~ai(t). We can compute this acceleration as

~ai(t) ←
~Fi(t)

mi
.

(Observe that the right-hand side is a vector quantity, since it is the product of a scalar 1/mi

and a vector ~Fi(t).)

The change in velocity over a time step ∆ is just the product of ∆ and the acceleration. Thus,
at each time t we modify the current velocity vector based on the aggregate force vector:

~vi(t+ ∆) ← ~vi(t) + ∆ · ~ai(t).

(Observe that the right-hand side is a vector quantity, since it is the sum of a vector ~vi(t)
and the product of a scalar ∆ and a vector ~ai(t).)

Once we know the new velocity, we can update the boid’s position. Its displacement over a
time interval ∆ is just the product of its new velocity and the elapsed time. That is,

pi(t+ ∆) ← pi(t) + ∆ · ~vi(t+ ∆)

The right-hand-side of this equation is the sum of a point (pi(t)) and the product of a scalar
(∆) and a vector (~vi(t + ∆)), which by the rules of affine geometry, is a point. Of course,
after this movement new forces will come into existence, and the process repeats.

We can simplify this by removing explicit mention of the boid index and the time. Given the
current boid state (p,~v), we compute its updated state (p′, ~v ′) as:

~a ←
~F

m
, ~v ′ ← ~v + ∆ · ~a and p′ ← p+ ∆ · ~v ′.

Lecture 19 3 Spring 2018

CMSC 425 Dave Mount & Roger Eastman

This leads to the simple numerical integrator described in the code block. (We hasten to add
that this integrator is very inaccurate, and should not be applied for real physical simulation.
It will be good enough for our simple boid simulation, however.)

Motion by Simple Physical Integration

t = 0

for (i = 1 to n) {

m[i] = ... mass of ith boid ...

p[i] = new Point(... initial position of ith boid ...);

v[i] = new Vector(... initial velocity of ith boid ...);

}

repeat forever {

for (i = 1 to n) {

F[i] = new Vector(... aggregate forces acting on boid i ...);

a[i] = F[i] / m[i];

v[i] += Delta * a[i];

p[i] += Delta * v[i];

}

t = t + Delta;

}

Boid Implementation: Given our simple physical integrator, the only question that remains is
how to compute the aggregate force ~Fi(t) acting on boid i at time t. First observe that, for
the sake of efficiency, you do not want the behavior of each boid to depend on the individual
behaviors of the n− 1 boids, since this would be much to costly, taking O(n2) time for each
iteration. Instead, the system maintains the boids stored in a spatial data structure, such as
a grid or quadtree, which allows each boid to efficiently determine the boids that are near
to it. Rules such as separation, avoidance, alignment can be based on a small number of
nearest neighbor boids. Cohesion requires knowledge of the center of the flock, but this can
be computed once at the start of each cycle in O(n) time.

Since these are not really natural forces, but rather heuristics that are used to guiding motion,
it is not essential to apply kinematics rigorously in order to determine future motion. Rather,
each rule naturally induces a directional influence. (For example, the force of avoidance is
directed away from the anticipated point of impact while the force for alignment is in the
average direction that nearby boids are facing.) Also, each rule can be associated with a
strength whose magnitude depends, either directly or inversely, on the distance from the
point of interest. (For example, avoidance forces are very strong near the obstacle but drop
off rapidly. In contrast, the cohesive force tends to increase slowly as the distance from the
center of flock increases.) Thus, given a unit vector ~u pointing in the induced direction and the
strength s given as a scalar, we can compute the updated acceleration vector as ~a = c · s · ~u,
where c is a “fudge factor” that can be adjusted by the user that is used to model other
unspecified physical quantities such as the boid’s mass.

One issue that arises with this or any dynamical system is how to avoid undesirable (meaning
unnatural looking) motion, such as collisions, oscillations, and unrealistically high accelera-
tions. Here are two approaches:

Lecture 19 4 Spring 2018

CMSC 425 Dave Mount & Roger Eastman

Prioritize and truncate: Assume that there is a fixed maximum magnitude for the accel-
eration vector (based on how fast a boid can change its velocity based on what sort of
animal is being modeled). Sort the rules in priority order. (For example, predator/ob-
stacle avoidance is typically very high, flock cohesion is low.) The initial acceleration
vector is the zero vector (meaning that the boid will simply maintain its current veloc-
ity). As each rule is evaluated, compute the associated acceleration vector and add it to
the current acceleration vector. If the length of the acceleration vector ever exceeds the
maximum allowed acceleration, then stop and return the current vector.

Weight and clamp: Assign weights to the various rule-induced accelerations. (Again, avoid-
ance is usually high and cohesion is usually low.) Take the weighted sum of these accel-
erations. If the length of the resulting acceleration vector exceeds the maximum allowed
acceleration, then scale it down

The first method has the virtue that, subject to the constraint on the maximum acceleration,
it processes the most urgent rules first. The second has the virtue that every rule has some
influence on the final outcome. Of course, since this is just a heuristic approach, the developer
typically decides what sort of approach yields the most realistic results.

Pursuit Evasion: The next level up from herding behavior, which is characteristic of animals, is
the type of purposeful behavior that is characteristic of more human-like intelligence. There
are many motion-planning problems where srategic goals are involved, such as a pack of wolves
attacking a herd of elk. Both sets of agents (wolves and elk) have their own individual aims
(kill or avoid being killed), and as a group they can attempt to coordinate their behaviors in
order to achieve these aims. These strategies are generally quite complicated and difficult to
describe formally. To make the task simpler, mathematicians have posed extremely simple
special cases, called pursuit-evasion games, in order to better understand these strategies.

In pursuit-evasion games, the agents are divided into two groups. The pursuers attempt
to track down and locate the evaders, while the latter attempt to avoid being caught by a
pursuer. These games may be played in a discrete setting (e.g., where agents are located on
a chess board and move one square at a time) or continuous setting (e.g., where agents are
points on the real plane, and may move along any trajectory they like). There are a number of
famous examples of such games whose solutions are quite complex. They come with colorful
names, like the homocidal chauffeur game (a high-speed car driver with a limited turning
radius is trying to run over a slow but highly maneuverable pedestrian) and the princess and
monster game (a slow-moving monster in a cave is trying to catch a fast moving princess,
but both operate in total darkness). Let’s look at a couple of well-studied pursuit-evasion
problems in greater detail.

Visibility-based Pursuit Evasion We are given a continuous domain (e.g., a simple poly-
gon) in the plane. Two moving points, the pursuer p and the evader e, can move in
time but must stay within the domain. Let p(t) and e(t) denote their positions at some
time t ≥ 0. The pursuer has caught the evader if at any time t1 > 0, p(t1) can see e(t1),
meaning that the line segment p(t)e(t) lies entirely within the interior of the domain. We
assume that the evader knows where the pursuer is at times and can move at arbitrarily
high speeds. The question is whether it is possible to plan a path for the pursuer such

Lecture 19 5 Spring 2018

CMSC 425 Dave Mount & Roger Eastman

that the evader cannot escape being caught eventually. (Note that the notion of being
“caught” really just means being “seen.”)

p

e?e?

e? e?

(a) (b)

p

(c)

p

(d)

e?

Fig. 3: Visibility-based pursuit evasion. In the case of polygon (a), the pursuer has a winning
strategy, but in (c) the evader can always evade the pursuer.

For example, consider the domain shown in Fig. 3. For the domain shown in (a), the
pursuer wins the game by following the path shown in (b). No matter where the evader
attempts to hide, he will eventually be seen and further he cannot sneak from one hiding
place to another without being seen by the pursuer. However if we add four small nobs
at the end of each of the four bays, the evader now wins the game (assuming he knows
the pursuer’s strategy in advance).

Seeing why the evader can elude detection involves an analysis of the various cases of
the sequence of bays visited by the pursuer. For example, suppose that the pursuer
vists the northeast (NE) bay first, then the southeast (SE), then the northwest (NW),
and then comes back to the SE bay, and suppose that the evader starts in the NW bay.
The evader could reason as follows. After the pursuer leaves NE and moves down to
look into SE, the evader zips from NW to NE. When traverses the central horizontal
corridor and starts moving up to the NW bay, the evader is free to move up into the
NE bay. Finally, when the pursuer returns to SE, the evader has left it. After a bit of
thinking, you should be able to convince yourself that by looking ahead to the pursuer’s
next move, the evader can always identify a bay in which to hide now and escape from
later.

To see whether you understand this, consider the four domains shown in Fig. 4. For
which of these does the pursuer have a winning strategy, and for which does the evader?

(a) (b) (c) (d)

Fig. 4: Visibility-based pursuit evasion. In which of these does the pursuer win? (Hint: The evader
wins in only one of them.)

Given a simple polygon, it is possible to determine whether there exists a pursuit path

Lecture 19 6 Spring 2018

CMSC 425 Dave Mount & Roger Eastman

(that is, a winning solution for the pursuer). However, the algorithm is quite complex.
It runs in time O(n2), where n is the number of vertices in the polygon. The success of
the evader depends on its complete knowledge of the pursuer’s path. If the pursuer is
allowed to use randomization (coin flips) to determine its moves, then it can be shown
that the pursuer will eventually get lucky and find the evader, no matter how clever the
evader is.

Lion and Man: This game is played in the first quadrant of the real plane (x ≥ 0 and y ≥ 0).
There is a lion that starts at a point L = (Lx, Lx) and a man at point M = (Mx,My).
At each step, the man may take one move of length up to 1 unit, and then the lion may
take one move of length up to 1 unit, and this repeats (see Fig. 5(a)). Assuming both
players play in the best way possible, either the lion will eventually catch the man (when
the two points coincide) or the man can evade the lion forever. Based on the starting
configuration, which is it?

There are a few cases that are easy to see. First off, if the man is either north (My ≥ Ly)
or east (Mx ≥ Lx) then the man can escape being caught forever. But what if Mx < Lx

and My < Ly? It turns out that the man will eventually be caught. However, it is not
easy to see exactly why.

Here is a winning strategy for the tiger for the above case. First, observe that M lies
below and to the left of L, then there exists a point C with the following properties:
(1) L lies along the line segment CM , (2) a circle centered at C and passing through L
intersects both the positive x- and positive y-axes (Fig. 5(b)).

(a) (b) (c)

L

M

L

M

C

Mi−1

Li−1

to C

Mi
Li

Fig. 5: Lion and Man Problem

Suppose that during the ith step, the man moves from point Mi−1 through some distance
0 < δ ≤ 1 to a point Mi. Draw a circle centered at Li−1 of radius δ. Observe that
(given the relative positions of Mi−1, Li−1 and C) a disk of radius δ centered at Li−1
intersects the line segment MiC. Set Li to the closest point along this line segment to
Mi (see Fig. 5(c).) Observe that the invariant is preserved, and Li is a bit closer to Mi.
Eventually, the man will lie within this circle of radius δ, and the lion catches the man.

Lecture 19 7 Spring 2018

