
CMSC 425 Dave Mount & Roger Eastman

CMSC 425: Lecture 20
Motion Planning: Crowd Motion

Reading: The material on velocity obstacles is taken from J. van den Berg, S. Guy, M. C. Lin, D.
Manocha, “Reciprocal n-body Collision Avoidance,” Proc. Int. Symposium of Robotics Research
(ISRR), 2009.

Overview: So far, we have discussed path planning and motion planning in games from various
perspectives, ranging from point-to-point motion of a single agent to the coordinated move-
ment of flocks of birds. Today, we will discuss an important problem, which arises in many
games. This is simulating the behavior of humans in crowded situations.

Crowd Motion: Today, we will discuss motion simulation involving a number of intelligent au-
tonomous agents, as arises in crowds of pedestrians. Unlike flocking systems, in which it is
assumed that the agents behave homogeneously, in a crowd it is assumed that each agent has
its own agenda to pursue (see Fig. 1). For example, we might imagine a group of students
walking through a crowded campus on their way to their next classes. Since such agents
are acting within a social system, however, it is assumed that they will tend to behave in a
manner that is consistent with social conventions. (I don’t want you to bump into me, and
so I will act in a manner to avoid bumping into you as well.)

Fig. 1: Crowd simulation.

Crowd simulation is actually a very broad area of study, ranging from work in game program-
ming and computer graphics, artificial intelligence, social psychology, and urban architecture
(e.g., planning evacuation routes). In order to operate in the context of a computer game,
such a system needs to be decentralized, where each member of the crowd determines its own
action based on the perceived actions of other nearby agents. The problem with applying a
simple boid-like flocking behavior is that, whereas flocking rules such as alignment naturally
produce systems that avoid collisions between agents, the diverse agendas of agents in crowds
naturally brings them directly into collisions with other agents (as in pedestrians traversing
a crosswalk from both sides). In order to produce more realistic motion, the agents should
anticipate where nearby agents are moving, and then plan their future motion accordingly.

Lecture 20 1 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

We discuss two models of crowd behavior, social-force dynamics and (reciprocal) velocity
obstacles.

Social-Force Dynamics: In our presentation of flocking behavior with Boids, we presented a
model in which the motion of each artificial animal is determined by a collection of simple
local forces based on the other agents in the system. In much the same manner that a physicist
would simulate the motion of a collection of particles in computational fluid dynamics, we
can simulate the fluid-like motion of animals in the flock. This can be applied to human
crowd behavior as well. At an individual level, human behavior is quite chaotic, and it is not
easy to predict future motion based on past motion. However, for many common situations
the aggregate behavior of a large group of people can be quite predictable. Examples include
people walking along corridors or sidewalks, moving into or evacuating from a building, milling
around in a large area (such as people at a party or on the floor of a convention). Here is an
interesting observation that behavioral research confirms:

• A flock of geese flying over long distances form an inverted “V”-shaped formation (with
the apex at the front of the flock). This is natural, because birds seek to reduce their
wind resistance, which this formation does.

• A small group (3–5) people walking in a wide-open area tend to form a natural “V”-
shape (with the apex at the rear of the group). This is natural, because humans want
to be able to see each other and hear each other speak, which this formation permits.

In neither case is there a centralized control that enforces either of these behaviors. They just
emerge naturally from the local desires of the participants. Social-force dynamics attempts to
model the motion of large crowds of humans in terms of simple local forces that incrementally
affect their individual motions.

Recalling our earlier lecture on agents in AI, each person in a crowd experiences sensory
stimuli, which cause a behavioral reaction that depends on the agent’s personal aims and is
chosen from a set of behavioral alternatives. The choice depends on a utility maximization,
which varies by individual. While each individual may have a (highly unpredictable) utility
function, the utility functions of a large group can be modeled by a probability distribution.
(E.g., 10% of people are just focused on getting as quickly as possible to their destination,
20% are in no hurry or are strolling together with a friend, and 70% are staring at their
mobile devices and they are not paying attention to anything else.)

The physics-based model associates with each agent i and each time instant t a current
position, denoted pi(t), a current velocity vector, denoted ~vi(t). Based on the agent’s desired
path (which resulted from some path planning procedure) each agent has a target velocity
vector, denoted ~v 0

i (t). The current velocity may be affected by immediate forces (the desire
to avoid a collision, for example), but the target remains relatively stable and points towards
the agent’s ultimate goal.

As described below, various forces will be evaluated at each time step. Each force will be
represented as a vector, and the sum of these forces will result in an aggregate force vector,
denoted ~Fi(t). (For example, the aggregate force will tend to push the agent away from other
agents in the crowd and obstacles in the environment, and will also nudge it back towards
the target velocity.)

Lecture 20 2 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

Given the current state (pi(t), ~vi(t), ~v
0
i (t)), and the aggregate force vector ~Fi(t), physics in-

tegration can be applied just as in the flocking lecture to simulate the motion of the agents.
Here are some issues that affect the forces.

Separation: The agent would like to avoid collisions with other agents in the crowd. We can
model this as a repulsive force vector fji(t) that is directed from a nearby agent j toward
agent i. This force would presumably be the greatest for other agents that are within
a proximity sphere about agent i. Ideally, this force should take into consideration the
velocity of the other agent j. (In the discussion below on reciprocal velocity obstacles,
it is discussed how to compute such a force.)

Obstacle Avoidance: Another form of separation is a repulsive force to keep the agent
from colliding with obstacles in the scene. (This includes both static objects, such as
structures and utility poles, and dynamic objects, such as motor vehicles.)

Attraction: An agent that is walking with a group (e.g., a single companion, within a small
group of friends, or as part of a tour group) will want to maintain proximity with other
agents within the group. This can be modeled as a force fig(t) that attracts agent i
to the perceived center of group g to which it belongs (or perhaps to the leader of the
group in the case of a tour group).

Traffic signals and social conventions: In urban settings, signals like walk-lights and
cross-walks naturally induce forces that encourages or discourages movement across road-
ways. In certain regions, there is a tendency to walk on the right side or left side of a
corridor or sidewalk, presumably drawn from the conventions for driving in the region.

Individual variations: Not all individuals respond in the same manner to the same stimuli.
When facing a back-up, a passive agent will wait patiently, while a more aggressive agent
will try to find a way around the back-up or muscle through the crowd.

Velocity Obstacles: While the social-force dynamics can produce reasonable crowd behavior in
some environments, it does not always produce the most accurate motion. This is due in part
because humans have the ability to anticipate the movement of nearby agents, and alter their
motion accordingly. Based on relative speeds and directions, each agent can determine a set
of forbidden velocities (represented as a region of some velocity space) that will lead to an
imminent collision. The agent then selects a velocity that is close to its desired velocity, but
lying outside of the region of forbidden velocities. A robust method for doing this is based
on the notion of velocity obstacles.

Suppose that an agent a is moving in a crowded environment where many other agents are
also moving. We assume that a can perceive the motions of nearby agents and generate rough
estimates on their velocities. Agent a is also interested in traveling to some destination, and
(based on our path finding algorithm) we assume that a has a preferred velocity, v∗a, which it
would assume if there were no other agents to consider.

For the sake of simplicity, we will model agents as circular disks translating in the plane.
Consider two such agents, a and b, of radii ra and rb and currently positioned at points pa
and pb, respectively (see Fig. 2(a)). If we assume that agent a moves at velocity va, then at
time t it will have moved a distance of t · va from its initial position, implying that it will be
located at pa + t · va. We will refer to this as pa(t).

Lecture 20 3 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

x

y

pa

pb

a

b

rb

ra

(a)

vx

vy

pb − pa

ra + rb

(b)

VOa|b B(pb − pa, ra + rb)

vx

vy

(c)

VOτa|b

B
pb−pa

τ , ra+rbτ



Fig. 2: Velocity obstacle for a induced by b (assuming b is stationary).

For now, let’s assume that object b is not moving, that is, pb(t) = pb for all t. Let’s consider
the question of how to select a velocity for a that avoids colliding with b any time in the future.
Two disks intersect if the distance between their centers ever falls below the sum of their radii.
More formally, let ‖u‖ denote the Euclidean length of a vector u. Then ‖pa(t)− pb(t)‖ is the
distance between pa and pb at time t (that is, the length of the vector from b to a). Thus,
the two agents collide if ‖pa(t)− pb(t)‖ < ra + rb. By substituting the definitions of pa(t) and
pb(t), we find that a velocity va will result in a collision some time in the future if there exists
a t > 0, such that

‖(pa + t · va)− pb‖ < ra + rb. (1)

We would like to express the velocities va that satisfy the above criterion as lying within a
certain “forbidden region” of space. To do this, define B(p, r) to be the open Euclidean ball
of radius r centered at point p. That is

B(p, r) = {q : ‖q − p‖ < r}.

We can rewrite Eq. (1) as
‖t · va − (pb − pa)‖ < ra + rb,

which is equivalent to saying that t · va’s distance from the point pb − pa is less than ra + rb,
or equivalently, the (parametrized) vector t · va lies within a ball of radius ra + rb centered at
the point pb − pa. Thus, we can rewrite Eq. (1) as

t · va ∈ B(pb − pa, ra + rb),

As t varies from 0 to +∞, the vector t · va travels along a ray that starts at the origin and
travels in the direction of va. Therefore, the set of forbidden velocities are those that lie
within a cone that is centered at the origin and encloses the ball B(pb − pa, ra + rb).

We define the velocity obstacle of a induced by b, denoted VOa|b to be the set of velocities of
a that will result in a collision with the stationary object b.

VOa|b = {v : ∃t ≥ 0, t · v ∈ B(pb − pa, ra + rb)}.

Lecture 20 4 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

(See Fig. 2(b).)

One problem with the velocity object is that it considers time going all the way to infinity.
In a dynamic setting, we cannot predict the motion of objects very far into the future. So, it
makes sense to truncate the velocity obstacle so that it only involves a limited time window.
Given a time value τ > 0, what the set of velocities that will result in agent a colliding with
agent b at any time t, where 0 < t ≤ τ is the truncated velocity obstacle:

VOτ
a|b = {v : ∃t ∈ [0, τ ], t · v ∈ B(pb − pa, ra + rb)}.

This is a subset of the (unbounded) velocity obstacle that eliminates very small velocities
(since collisions farther in the future result when a is moving more slowly). The truncated
velocity obstacle is a truncated cone, where the truncation occurs at the boundary of the
(1/τ)-scaled ball B((pb − pa)/τ, (ra + rb)/τ) (see Fig. 2(c)). Observe that there is an obvious
symmetry here. Moving a with velocity v will result in a collision with (the stationary) b if
and only if moving b with velocity −v will result in an intersection with (the stationary) a.
Therefore, we have

VOτ
a|b = −VOτ

b|a.

Collision-Avoiding Velocities: Next, let us consider how the velocity obstacle changes if b is
moving. If we assume that b is moving with velocity vb, then a velocity va will generate a
collision precisely if the differences in their velocities va − vb generates a collision under the
assumption that b is stationary, that is, va − vb ∈ VOτ

a|b. Equivalently, va will generate a

collision if b if va lies in the offset velocity obstacle VOτ
a|b + vb (see Fig. 3(a)).

vx

vy

(a)

VOτa|b

VOτa|b + vb

vb

vb

vx

vy

(b)

VOτa|b

Vb

VOτa|b ⊕ Vb
CAτa|b(Vb)

Fig. 3: Velocity obstacles where (a) object b is moving at velocity vb and (b) object b is moving at
any velocity in the set Vb.

We can further generalize this. We usually do not know another object’s exact velocity, but
we can often put bounds on it. Suppose that rather than knowing b’s exact velocity, we know
that b is moving at some velocity vb that is selected from a region Vb of possible velocities.
(For example, Vb might be square or circular region in space, based on the uncertainty in its
motion estimate.)

Lecture 20 5 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

Let us consider the velocities of a that might result in a collision, assuming that vb is chosen
from Vb. To define this set, we first define the Minkowski sum of two sets of vectors X and
Y to be the set consisting of the pairwise sums of vectors from X and Y , that is,

X ⊕ Y = {x+ y : x ∈ X and y ∈ Y }.

Then, clearly a might collide with b if a’s velocity is chosen from VOτ
a|b ⊕ Vb. Therefore, if

we want to avoid collisions with b altogether, then a should select a velocity from outside
this region. More formally, we define the set of collision-avoiding velocities for a given than
b selects a velocity from Vb is

CAτ
a|b(Vb) = {v : v /∈ VOτ

a|b ⊕ Vb}

(see Fig. 3(b).)

Just to recap, if a selects its velocity vector from anywhere outside VOτ
a|b ⊕ Vb (that is,

anywhere inside CAτ
a|b(Vb)), then no matter what velocity b selects from Vb, a is guaranteed

not to collide with b within the time interval [0, τ ].

This now provides us with a strategy for selecting the velocities of the agents in our system:

• Compute velocity bounds Vb for all nearby agents

• Compute the intersection of all collision-avoiding velocities for these objects, that is

CAτ
a =

⋂
b

CAτ
a|b(Vb)

Any velocity chosen from this set is guaranteed to avoid collisions from now until time
τ .

• Select the vector from CAτ
a that is closest to a’s ideal velocity v∗a.

In practice, we need to take some care in the implementation of this last step. First, there
will be upper limits on fast an object can move or change directions. So, we may not be free
to select any velocity we like. Subject to whatever practical limitations we have on what the
future velocity can be, we select the closest one that lies within CAτ

a. If there is no such
vector, then we must consider the possibility that we cannot avoid a collision. If so, we can
select a vector that overlaps the smallest number of velocity obstacles.

Issues: While this might seem to be the end of the story with respect to velocity obstacles, there
are still issues that arise. One of these issues was hinted at in the last paragraph. In cases
where there are lots of agents and the velocity estimates are poor, the collision-avoiding area
may be empty. There are a number of strategies that one might consider for selecting a good
alternative.

There is a more significant problem with this approach, however, which arises even if we
consider only two agents. The problem is that agents that are moving towards each other can
engage in a very unnatural looking oscillating motion. The situation is illustrated in Fig. 4.
Two agents are moving to each other. They see that they are on a collision course, and
so the divert from their initial velocities. Let’s imagine the best-case scenario, where they

Lecture 20 6 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

have successfully resolved their impending collision (whew!) as a result of this diversion (see
Fig. 4(b)). Now, each agent sees that the other agent has diverted from its trajectory and
reasons, “Great! The other guy has veered off, and I have won the game of chicken. So, now
I can resume on my original velocity” (see Fig. 4(c)). So, both agents return to their original
velocity, and they are now right back on a collision course (see Fig. 4(d)) and so again they
divert (see Fig. 4(e)). Clearly, this vicious cycle of zig-zagging motion will repeat until they
manage to make it around one another.

(a) (b) (c)

ahead! Both divert
We’re safe...

Resume course

(d) (e)

Both divert

Collision
ahead!
Collision

Fig. 4: Oscillation that can result from standard velocity-obstacle motion planning.

Although even humans sometimes engage in this sort of brief oscillation when meeting each
other head-on, this sort of repeated oscillation is very unnatural, and is due to the fact that
both agents are acting without consideration for what the other agent might reasonable do.
The question then is how to fix this?

Reciprocal Velocity Obstacles: The intuition behind fixing the oscillation issue is to share re-
sponsibility. We assume that whenever a collision is possible between two agents, both agents
perceive the danger and (since they are running the same algorithm) they both know how to
avoid it. Rather than having each agent assume total responsibility for correcting its velocity,
we instead ask each agent to take on half of the responsibility for avoiding the collision. In
other words, each agent diverts its path (that is, alters its velocity) by exactly half the amount
needed to avoid the collision. It assumes that the other agent will reciprocate, by performing
the other half of the diversion. It turns out that this greatly reduces the oscillation problem,
since two head-on agents will now divert just enough to avoid each other.

This leads to the concept of reciprocal velocity obstacles. Before defining this notion, let us
recall the sets CAτ

a|b(Vb), the collision-avoiding velocities for a assuming that b selects its

velocity from Vb, and CAτ
b|a(Va), the collision-avoiding velocities for b assuming that a selects

its velocity from Va. We say that two sets of candidate velocities Va and Vb are reciprocally
collision avoiding if

Va ⊆ CAτ
a|b(Vb) and Vb ⊆ CAτ

b|a(Va).

Lecture 20 7 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

This implies a very harmonious set of candidate velocities, since for any choice va ∈ Va and
vb ∈ Vb, we can be assured that these two agents will not collide.

Note that there is a complimentary relationship between these two candidate sets. As we
increase the possible velocities in Va, we reduce the possible set of velocities that b can use to
avoid a collision, and vice versa. Of course, we would like be as generous as we can, by giving
each agent as much flexibility as possible. We say that two such candidate velocity sets are
reciprocally maximal if

Va = CAτ
a|b(Vb) and Vb = CAτ

b|a(Va).

Note that we face a tradeoff here, since we could make Va very large, but at the expense of
making Vb very small, and vice versa. There are infinitely many reciprocally maximal collision
avoiding sets. So what should guide our search for the best combination of candidate sets?
Recall that each agent has its preferred velocity, v∗a and v∗b . It would seem natural to generate
these sets in a manner that gives each agent the greatest number of options that are close to
its preferred velocity. We seek a pair of candidate velocity sets that are optimal in the sense
that they provide each agent the greatest number of velocities that are close to the agent’s
preferred velocity.

There are a number of ways of making this concept more formal. Here is one. Consider two
pairs (Va, Vb) and (V ′a, V

′
b ) of reciprocally maximal collision avoiding sets. For any radius r,

B(v∗a, r) denotes the set of velocities that are within distance r of a’s preferred velocity and
B(v∗b , r) denotes the set of velocities that are within distance r of b’s preferred velocity. The
quantity area(Va∩B(v∗a, r)) can be thought of as the “number” (more accurately the measure)
of candidate velocities for a that are close (within distance r) of its preferred velocity. Ideally,
we would like both area(Va∩B(v∗a, r)) and area(Vb∩B(v∗b , r)) to be large, so that both agents
have access to a large number of preferred directions. One way to guarantee that two numbers
are large is to guarantee that their minimum is large. Also, we would like the pair (Va, Vb)
to be fair to both agents, in the sense that area(Va ∩ B(v∗a, r)) = area(Vb ∩ B(v∗b , r)). This
means that they both agents have access to the same “number” of nearby velocities.

Combining the concepts of fairness and maximality, we say that a pair (Va, Vb) of reciprocally
maximal collision avoiding sets is optimal if, for all radii r > 0, we have

Fair: area(Va ∩B(v∗a, r)) = area(Vb ∩B(v∗b , r))

Maximal: For any other reciprocal collision avoiding set (V ′a, V
′
b ),

min(area(Va∩B(v∗a, r)), area(Vb∩B(v∗b , r))) ≥ min(area(V ′a∩B(v∗a, r)), area(V ′b∩B(v∗b , r))).

Now that we have defined this concept, it is only natural to ask whether we have any hope
of computing a pair of sets satisfying such lofty requirements. The remarkable answer is yes,
and in fact, it is not that hard to do! The solution is described in a paper by J. van den
Berg, M. C. Lin, D. Manocha (see the readings at the start of these notes). They define
an optimal reciprocal collision avoiding pair of candidate velocities, which they denote by
(ORCAτ

a|b,ORCAτ
b|a), to be a pair of velocity sets that satisfy the above optimality properties.

They show how to compute these two sets as follows. First, let us assume that the preferred
velocities of the two agents puts them on a collision course. (This is just for the sake of

Lecture 20 8 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

illustration. The construction works even if this is not the case.) That is, v∗a − v∗b ∈ VOτ
a|b.

Clearly, we need to divert one agent or both to avoid the collision, and we will like this
diversion to be as small as possible. Let u denote the vector on the boundary of VOτ

a|b that

lies closest to v∗a − v∗b (see Fig. 5(a)). Since VOτ
a|b is just a truncated cone, it is not too hard

to compute the vector u. (There are basically two cases, depending on whether the closest
boundary point lies on one of the flat sides or on the circular arc at the base.)

(a)

VOτa|b

v∗a

(b)

v∗b

v∗a − v∗b
u

ORCAτa|b

(c)

u
2 v∗a

ORCAτb|a

v∗b
−u2

Fig. 5: Computing an optimal reciprocal collision avoiding pair of candidate velocities.

Intuitively, u reflects the amount of relative velocity diversion needed to just barely escape
from the collision zone. That is, together a’s diversion plus b’s diversion (negated) must sum
to u. We could split the responsibility however we like to. As we had discussed earlier, for the
sake reciprocity, we would prefer that each agent diverts by exactly half of the full amount.
That is, a will divert by u/2 and b will divert by −u/2. (To see why this works, suppose that
v′a = v∗a + u/2 and v′b = v∗b − u/2. The resulting relative velocity is v′a − v′b = v∗a − v∗b + u,
which is a collision-free velocity.)

In general, there are a number of choices that a and b could make to avoid a collision. Let
n denote a vector of unit length that points in the same direction as u. We would like a to
change its velocity from v∗a to a velocity whose orthogonal projection onto the vector n is of
length at least ‖u/2‖. The set of allowable diversions defines a half-space (that is, the set of
points lying to one side of a line), and is given by the following formula:

ORCAτ
a|b =

{
v :
(
v −

(
v∗a +

u

2

))
· n ≥ 0

}
,

(where the · denotes the dot product of vectors). This formula defines a halfspace that
is orthogonal to u and lies at distance ‖u/2‖ from v∗a (see Fig. 5(b)). Define ORCAτ

b|a,

symmetrically, but using −u
2 instead (see Fig. 5(c)). In their paper, van den Berg, Lin,

and Manocha claim that the resulting pair of sets (ORCAτ
a|b,ORCAτ

b|a) define an optimal
reciprocally maximal pair of collision avoiding. In other words, if a selects any velocity from
ORCAτ

a|b and b selects any velocity from ORCAτ
b|a, and these two sets are both fair and

provide the greatest number of velocities that are close to both a and b’s ideal velocities.

This suggests a solution to the problem of planning the motion of n bodies. Let B =
{b1, . . . , bn} denote the set of bodies other than a. Compute the ORCA sets for a relative to

Lecture 20 9 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

all the other agents in the system. That is,
⋂n
i=1 ORCAτ

a|bi . Since each of these regions is a

halfplane, there intersection defines a convex polygon. Next, find the point v′a in this convex
polygon that minimizes the distance to v∗a. This point defines a’s next velocity. By repeating
this for every agent in your system, the result is a collection of velocities that are mutually
collision free, and are as close as possible to the ideal velocities.

v∗a

v′a

n⋂
i=1

ORCAτa|bi

Fig. 6: Computing agent a’s velocity.

There are two shortcomings with this approach. First, if the agents are very close to one
another, it may be that the intersection of the collision-free regions is empty. In this case,
we may need to find an alternate strategy for computing a’s velocity (or simply accept the
possibility of an intersection).

The other shortcoming is that it requires every agent to know the preferred velocity v∗bi
for each of the other objects in the system. While the simulator may know this, it is not
reasonable to assume that every agent knows this information. A reasonable alternative is to
form an estimate of the current velocity, and use that instead. The theory is that most of the
time, objects will tend to move in their preferred direction.

Lecture 20 10 Spring 2018


