
CMSC 425 Dave Mount & Roger Eastman

CMSC 425: Lecture 22
Multiplayer Games and Networking

Reading: Today’s lecture is from a number of sources, including lecture notes from University of
Michigan by Sugih Jamin and John Laird, and the article “Network and Multiplayer,” by Chuck
Walters which appears as Chapter 5.6 in Introduction to Game Development by S. Rabin.

Multiplayer Games: Today we will discuss games that involve one or more players communicat-
ing through a network. There are many reasons why such games are popular, as opposed say
to competing against an AI system.

• People are “better” (less predictable/more complex/more interesting) at strategy than
AI systems

• Playing with people provides a social element to the game, allowing players to commu-
nicate verbally and engage in other social activities

• Provides larger environments to play in with more characters, resulting in a richer ex-
perience

• Some online games support an economy, where players can buy and sell game resources

Multiplayer games come in two broad types:

Transient Games: These games do not maintain a persistent state. Instead players engage
in ad hoc, short lived sessions. Examples include games like Doom, which provided
either head-to-head (one-on-one) or death-match (multiple player) formats. The are
characterized as being fast-paced and providing intense interaction/combat. Because of
their light-weight nature, any client can be a server.

Persistent Games: These games are run by a centralized authority that maintains a per-
sistent world. Examples include massively multiplayer online games (MMOGs), such
as “World of Warcraft” (more specifically an MMORPG), which are played over the
Internet.

Performance Issues: The most challenging aspects of the design of multiplayer networked games
involve achieving good performance given a shared resource (the network).

Bandwidth: This refers to the amount of data that can be sent through the network in
steady-state.

Latency: In games where real-time response is important, a more important issue than
bandwidth is the responsiveness of the network to sudden changes in the state. Latency
refers to the time it takes for a change in state to be transmitted through the network.

Reliability: Network communication occurs over physical media that are subject to errors,
either due to physical problems (interference in wireless signals) or exceeding the net-
work’s capacity (packet losses due to congestion).

Lecture 22 1 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

Security: Network communications can be intercepted by unauthorized users (for the pur-
pose of stealing passwords or credit-card numbers) or modified (for the sake of cheating).
Since cheating can harm the experience of legitimate users, it is important to detect and
minimize the negative effects of cheaters.

Of course, all of these considerations interact and trade-offs must be made. For example,
enhancing security or reliability may require more complex communication protocols, which
can have the effect of reducing the useable bandwidth or increasing latency.

Network Structure: Networks are complex entities to engineer. Let us describe the basics of
network structure. (For more information, take a course such as CMSC 417.) In order to
bring order to this topic, networks are often described in a series of layers, which is called
the Open System Interconnect (OSI) model. Here are the layers of the model, from lowest
(physical) to the highest (applications).

Physical: This is the physical medium that carries the data (e.g., copper wire, optical fiber,
wireless, etc.)

Data Link: Deals with low-level transmission of data between machines on the network.
Issues at this level include things like packet structure, basic error control, and machine
(MAC) addresses.

Network: This controls end-to-end delivery of individual packets. It is responsible for rout-
ing (path determination and logical addressing) and balancing network flow. This is the
layer where the Internet Protocol (IP) and IP addresses are defined.

Transport: This layer is responsible for transparent end-to-end transfer of data (not just
individual packets) between two hosts. This layer defines two important protocols, TCP
(transmission control protocol) and UDP (user datagram protocol). This layer defines
the notion of a net address, which consists of an IP address and a port number. Different
port numbers can be used to partition communication between different functions (http,
https, smtp, ftp, etc.)

Session: This layer is responsible for establishing, managing, and terminating long-term
connections between local and remote applications (e.g., logging in/out, creating and
terminating communication sockets).

Presentation: Provides for conversion between incompatible data representations based on
differences system or platform, such as character encoding (e.g., ASCII versus Unicode)
and byte ordering (highest-order byte first or lowest-order byte first) and other issues
such as encryption and compression.

Application: This is the layer where end-user applications reside (e.g., email (smtp), data
transfer (ftp, sftp), web browsers (http, https)).

The OSI model is illustrated in Fig. 1. While the OSI model is an international standard, it
is not the model used in the Internet. The Internet is based on a similar, but older model
called TCP/IP.

TCP/IP was developed during the 1960s as part of the US Department of Defense’s Advanced
Research Projects Agency (ARPA) effort to build a nationwide packet-data network. It was

Lecture 22 2 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

Physical
Data Link

Network

Transport
Session

Presentation

Application7

6

5

4

3

2

1 Sends bits as signals
Sends frames of information

Sends packets over multiple links

Provides end-to-end delivery

Manages task dialogs

Converts different representations
Provides functions to users

OSI Reference Model

(usually Ethernet)
Network access

IP

TCP (host-to-host)

Applications

TCP/IP Reference Model

(FTP, SMTP, HTTP, ...)

Fig. 1: The Open System Interconnect (OSI) Model. (Courtesy of Ashok Agrawala’s notes.)

first used in UNIX-based computers in universities and government installations. Today, it is
the main protocol used in all Internet operations.

If you are programming a game that will run over the internet, you could well be involved in
issues that go as low as the transport layer (as two which protocol, TCP or UDP, you will
use), but most programming takes place at the application level.

Packets and Protocols: Online games communicate through a packet-switched network, like the
Internet, where communications are broken up into small data units, called packets, which are
then transmitted through the network from the sender and reassembled on the other side by
the receiver. (This is in contrast to direct-link communication, such as through a USB cable
or circuit-switched communication, which was used for traditional telephone communication.)

In order for communication to be possible, both sides must agree on a protocol, that is, the
convention for decomposing data into packets, routing and transferring data through the
network, and dealing with errors. Communication networks may be unreliable and may con-
nect machines having widely varying manufacturers, operating systems, speed, data formats.
Examples of issues in the design of a network protocol include the following:

Packet size/format: Are packets of fixed or variable size? How is data to be laid out within
each packet.

Handshaking: This involves the communication exchange to ascertain how data will be
transmitted (format, speed, etc.)

Acknowledgments: When data is received, should its reception be acknowledged and, if
so, how?

Error checking/correction: If data packets have not been received or if their contents
have been corrupted, some form of corrective action must be taken.

Compression: Because of limited bandwidth, it may be necessary to reduce the size of the
data being transmitted (either with or without loss of fidelity).

Encryption: Sensitive data may need to be protected from eavesdroppers.

Later in this lecture we will discuss two commonly-used protocols that run at the Transport
layer of the OSI model, TCP and UDP. Before doing this, let us discuss the main issue that
arises in online games, latency.

Lecture 22 3 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

The Problem of Latency: Recall that latency is the time between when the user acts and when
the result is perceived (either by the user or by the other players). Because most computer
games involve rapid and often unpredictable action and response, latency is arguably the
most important challenge in the design of real-time online games. Too much latency makes
the game-play harder to understand because the player cannot associate cause with effect.
Latency also makes it harder to target objects, because they are not where you predict them
to be. Also, as we will see in future lectures, latency can be exploited in some cheats in online
games.

Note that latency is a very different issue from bandwidth. For example, your cable provider
may be able to stream a high-definition movie to your television after a 5 second start-up
delay. You would not be bothered if the movie starts after such a delay, but you would be very
annoyed if your game were to impose this sort of delay on you every time you manipulated
the knobs on your game controller.

The amount of latency that can be tolerated depends on the type of game. For example, in
a Real-Time Strategy (RTS) game, below 250ms (that is, 1/4 of a second) would be ideal,
250–500ms would be playable, and over 500ms would be noticeable. (Recall that “ms” refers
to 1/1000 of a second.) In a typical First-Person Shooter (FPS), the latency should be
smaller, say 150ms would be acceptable. In car racing game or other game that involves fast
(twitch) movements, latencies below 100ms would be required. Latencies in excess of 500ms
would make it impossible to control the car. Note that the average latency for the simplest
transmission (a “ping”) on the internet to a geographically nearby server is typically much
smaller than these numbers, say on the order of 10–100ms.

There are a number of sources of latency in online games:

Frame rate latency: Data is sent to/received from the network layer once per frame, and
user interaction is only sampled once per frame.

Network protocol latency: It takes time for the operating system to put data onto the
physical network, and time to get it off a physical network and to an application.

Transmission latency: It takes time for data to be transmitted to/from the server.

Processing latency: The time taken for the server (or client) to compute a response to the
input.

There are various techniques that can be used to reduce each of these causes of latency. Un-
fortunately, some elements (such as network transmission times) are not within your control.

Coping with Latency: Latency can be reduced in various ways (more servers placed closer to
players, faster machines), but it cannot be eliminated. What can the game programmer do
to conceal latency from the player? Any approach that you take will introduce errors in some
form. The trick is how to create the illusion to your user that he/she is experiencing no
latency.

Sacrifice accuracy: Given that the locations and actions of other players may not be known
to you, you can attempt to render them approximately. One approach is to ignore the
time lag and show a given player information that is known to be out of date. The
second is to attempt to estimate (based on recent behavior) where the other player is

Lecture 22 4 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

at the present time and what this player is doing. (See the material on dead-reckoning
below.) Both approaches suffer from problems, since a player may make decisions based
on either old or erroneous information.

Sacrifice game-play: Deliberately introduce lag into the local player’s experience, so that
you have enough time to deal with the network. For example, a sword thrust does not
occur instantaneously, but after a short wind-up. Although the wind-up may only take
a fraction of a second, it provides the network time to send the information through the
network that the sword thrust is coming.

Dealing with Latency through Dead Reckoning: One trick for coping with latency from the
client’s side is to attempt to estimate another player’s current position based on its recent
history of motion. Each player knows that the information that it receives from the server is
out of date, and so we (or actually our game) will attempt extrapolate the player’s current
position from its past motion. If our estimate is good, this can help compensate for the
lag caused by latency. Of course, we must worry about how to patch things up when our
predictions turn out to be erroneous.

• Each client maintains precise state for some objects (e.g. local player).

• Each client receives periodic updates of the positions of everyone else, along with their
current velocity information, and possibly the acceleration.

• On each frame, the non-local objects are updated by extrapolating their most recent
position using the available information.

• With a client-server model, each player runs their own version of the game, while the
server maintains absolute authority.

Inevitably, inconsistencies will be detected between the extrapolated position of the other
player and its actual position. Reconciling these inconsistencies is a challenging problem.
There are two obvious options. First, you could just have the player’s avatar jump instanta-
neously to its most recently reported position. Of course, this will not appear to be realistic.
The alternative is to smoothly interpolate between the player’s hypothesized (but incorrect)
position and its newly extrapolated position.

Dealing with Latency through Lag Compensation: As mentioned above, dead reckoning re-
lies on extrapolation, that is, producing estimates of future state based on past state. An
alternative approach, called lag compensation, is based on interpolation. Lag compensation
is a server-side technique, which attempts to determine a player’s intention.

Here is the idea. Players are subject to latency, which delays in their perception of the world,
and so their decisions are based on information that is slightly out of date with the current
world state. However, since we can estimate the delay that they are experiencing, we can try
to roll-back the world state to a point where we can see exactly what the user saw when they
made their decision. We can then determine what the effect of the user’s action would have
been in the rolled-back world, and apply that to the present world.

Here is how lag compensation works.

(1) Before executing a player’s current user command, the server:

Lecture 22 5 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

(a) Computes a fairly accurate estimate of the player’s latency.

(b) Searches the server history (for the current player) for the last world update that
was sent to the player and received by the player (just before the player would have
issued the movement command).

(c) From that update (and the one following it based on the exact target time being
used), for each player in the update, move the other players backwards in time to
exactly where they would have been when the current player’s user command was
generated. (This moving backwards must account for both connection latency and
the interpolation amount the client was using that frame.)

(2) Allow the user command to execute, including any weapon firing commands, etc., that
will run ray casts against all of the other players in their interpolated, that is, old
positions.

(3) Move all of the moved/time-warped players back to their correct/current positions

The idea is that, if a user was aiming accurately based on the information that he/she was
seeing, then the system can determine this (assuming it has a good estimate of each player’s
latency), and credit the player appropriately.

Note that in the step where we move the player backwards in time, this might actually require
forcing additional state information backwards, too (for example, whether the player was alive
or dead or whether the player was ducking). The end result of lag compensation is that each
local client is able to directly aim at other players without having to worry about leading his
or her target in order to score a hit. Of course, this behavior is a game design tradeoff.

Reliability: Let us move on from latency to another important networking issue, reliability. As
we mentioned before, in packet-switched networks, data are broken up into packets and then
may be sent by various routes. Packets may arrive out of order, they may be corrupted, or
they may fail to arrive at all (or after such a long delay that the receiver gives up on them).
Some network protocols (TCP in particular) attempt to ensure that every packet is delivered
and they arrive in order. (For example, if you are sending an email message, you would expect
the entire message to arrive as sent.)

As we shall see, achieving such a high level of reliability comes with associated costs. For
example, the user sends packets. The receiver acknowledges the receipt of packets to the
sender. If a packet receipt is not acknowledged, the sender resends the packet. The additional
communication required for sending, receiving, and processing acknowledgments can increase
latency and use more of the available bandwidth.

In many online games, however, we may be less concerned that every packet arrives on time
or in order. Consider for example a series of packets, each of which tells us where an enemy
player is located. If one of these packets does not arrive (or arrives late) the information is
now out of date anyway, and there is no point in having the sender resend the packet. Of
course, some information is of a much more important nature. Information about payments
or certain changes to the discrete state of the game (player X is no longer in the game), must
be communicated reliably. In short, not all information in a game is of equal importance with
respect to reliability.

Lecture 22 6 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

Communication reliability is handled by protocols at the transport level of the OSI model.
The two most common protocols are TCP (transmission control protocol) and UDP (user
datagram protocol).

Transmission Control Protocol: We will not delve into the details of the TCP protocol, but
let us highlight its major elements. First, data are transferred in a particular order. Each
packet is assigned a unique sequence number. When packets are received, they are reordered
according to these sequence numbers. Thus, packets may arrive out of order without affecting
the overall flow of data. Also, through the use of sequence numbers, the receiver can determine
whether any packets were lost. Second, the transmission contains check-sums, to ensure that
any (random) corruption of the data will be discovered. The receiver sends acknowledgments
of the receipt of packets. Thus, if a packet is not received, the sender will discover this and
can resend it.

TCP also has a basic capability for flow control. If the sender observes that too many packets
are failing to arrive, it decreases the rate at which it is sending packets. If almost all packets
are arriving, it slowly increases this rate. In this way, the network will not become too
congested.

Advantages:

• Guaranteed packet delivery

• Ordered packet delivery

• Packet check-sum checking (basic error detection)

• Transmission flow control

Disadvantages:

• Point-to-point transport (as opposed to more general forms, like multi-cast)

• Bandwidth and latency overhead

• Packets may be delayed to preserve order

TCP is used in applications where data must be reliably sent and/or maintained in order.
Since it is a reliable protocol, it can be used in games where latency is not a major concern.

User Datagram Protocol: UDP is a very light-weight protocol, lacking the error control and
flow control features of TCP. It is a connectionless protocol, which provides no guarantees of
delivery. The sender merely sends packets, with no expectation of any acknowledgment. As
a result, the overhead is much smaller than for TCP.

Advantages:

• Packet based—so it works with the internet

• Lower overhead than TCP in terms of both bandwidth and latency

• Immediate delivery—as soon as it arrives it goes to the client

Disadvantages:

• Point to point connectivity (as with TCP)

• No reliability guarantees

Lecture 22 7 Spring 2018



CMSC 425 Dave Mount & Roger Eastman

• No ordering guarantees

• Packets can be corrupted

• Can cause problems with some firewalls

UDP is popular in games, since much state information is nonessential and quickly goes out of
date. Note that although the UDP protocol has no built-in mechanisms for error checking or
packet acknowledgments, the application can add these to the protocol. For example, if some
packets are non-critical, they can be sent by the standard UDP protocol. Certain critical
packets can be flagged by your application, and as part of the packet payload, it can insert
its own sequence numbers and/or check-sums. Thus, although UDP does not automatically
support TCPs features, there is nothing preventing your application from adding these to a
small subset of important packets.

Area-of-Interest Management: In large massively multiplayer games, it would be inefficient to
inform every player on the state of every other player in the system. This raises the question of
what information does a player need to be aware of, and how to transmit just that information.
This is the subject of the topic of area-of-interest management. This subject is to networking
what visibility is to collision detection. This is typically employed in large games, and so it
is the server’s job to determine what information each player receives.

There are two common approaches, grid methods and aura methods. Grid methods partition
the world into a grid (which more generally may be something like a quadtree). Each cell
is associated with the players and other entities that reside within this cell. Then, the
information transmitted to a player is based on the entities residing within its own and
perhaps neighboring grid cells.

One shortcoming of this method is that it neglects the fact that some entities may not
correspond to individual points, but to entire regions of space. For example, a cloud of
poisonous gas cannot be associated with a single point in space. The alternative is called an
aura method, in which each entity is associated with a region of space, its sphere of influence.
All players that lie within this region are provided information on this entity.

Lecture 22 8 Spring 2018


