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1 Introduction

1.1 Project Summary

The goal of this project is to study the foundations, techniques, and current thought surrounding fault toler-
ant quantum computing. The subject encapsulates one of the greatest hurdles in creating a useful quantum
computer. As such, a thorough understanding of fault tolerant techniques is critical to understanding any
practical application (e.g. the goals of those trying to create quantum computers, the considerations of those
designing procedures for use of and on quantum computers, etc.)

To carry out our study, we decided to review Fault Tolerant Quantum Computation with Constant Error
Rate [1]. This, fairly lengthy, work lays the theoretical foundations for modern thought on the subject. It
includes descriptions of quantum error correcting codes (QECCs) that work for qudits of prime dimension.
These codes are: a generalization of CSS codes and a subset of those codes called polynomial codes. Using
these codes, they proceed to generate fault-tolerant universal gate set (capable of describing any valid quan-
tum circuit). They then provide several threshold theorems that show fault-tolerant quantum computation
is possible so long as the error rate is below some constant value (the titular threshold). These results hold
for a general qudit circuit using one of the above codes to compensate for a particular noise model. The
types of errors considered vary depending on the section of the paper, but the main result holds for indepen-
dent probabilistic noise. However, the most general threshold results hold for a ”general noise” model that
includes exponentially decaying correlations between errors, and the only restriction on the possible error
operators is that they are within ”some given distance” of the identity.

In this report we will summarize the general approach to fault tolerant quantum computing following the
paper [1]. We will begin by introducing concepts central to quantum error correcting codes (QECCS), and
present some particular codes of interest to the paper [1]. We will then discuss how a noisy quantum circuit
is generally modeled. Using the concepts laid out in the first two sections we will discuss fault tolerant
procedures including fault tolerant logic, zero-state preparation, and error detection/correction. Finally we
present a sketch of the threshold theorem for polynomial codes and independent probabilistic noise [1].

2 Error Correction

2.1 Concepts, Classical Example, and Quantum Complications

The basic idea of error correcting codes is that, if we wish to store and transmit data without said data
being compromised, we need to build some kind of larger mathematical structure to serve as a shield for
structure containing the data itself. This shield must, to be effective, be able to both survive one or more
errors (in the sense that accumulating n ≥ 1 errors doesn’t destroy the underlying data) and to be able to
correct those errors over time, by restoring the original state.

One widely used classical error correction code is the repetition code. For example, we could replace every
instance of the bit 0 in the data with the block 000, and similarly replace 1 with 111. This fulfills the first
desired property of our shield, because the failure of a single bit in the code doesn’t destroy the underlying
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data (i.e. this code can correct for a 1 bit error). To see this, suppose that the probability of a particular
bit flipping is p, and that we encounter the corrupted block 010. While we cannot say with 100% certainty
that the block was initially 000 rather than 111, it is more likely; specifically, if the block was originally 000
then one bit flip has occured, while if the block was originally 111 then two bit flips have occured. This
means the probability of 000 being correct is proportional to p, while the probability of 111 being correct
is proportional to p2, which is far smaller for systems with small values of p (for classical computers, p is
often on the order of 10−17- a truly miniscule ammount!). As for the second desired property of our shield,
repairability, the classical repetition code is easy to fix: we simply flip the offending bit, restoring the block
010 to 000.

The quantum case, unfortunately, is not so simple. Firstly because a qubit can accumulate errors in its
phase (i.e. |0〉 → − |0〉), a concept with no classical analog, and secondly because we cannot actually measure
all of the qubits to see if and what errors have occured without destroying the state. This requires us to use
a more clever combination of codes and corrections than before

The power of a quantum code lies in its ability to get around the measurements-collapse-states issue
mentioned previously: while we cannot make a full measurement of the state (or for that matter many kinds
of measurements), we CAN safely make CERTAIN KINDS of measurements to parse out the errors while
leaving the information intact. This concept is key to the class of QECCs called Stabilizer codes (of which
CSS codes and Polynomial Codes are an example).

2.2 Stabilizer Codes

Stabilizer codes are a more general class of QECCs subsuming CSS codes. In terms of our study, they are of
interest mostly due to the power of the formalism used to describe them, and the intuition that formalism
provides. The following discussion follows the discussion presented in Nielsen and Chuang [2].

Essentially, we want to construct codes in which special kinds of measurements can be used to figure out
what errors have occured without damaging our information. It turns out that these measurements will be
related to the group structure underlying the code we constructed. What kind of group structure we want
built into our code will depend on what errors we’re trying to correct; however, since any general, reversible
error is reducible to a bit or a phase flip the choice of the underlying group stucture is obvious: the Pauli
group.

To describe stabilizer codes, we’re going to introduce a new formalism for thinking about error correction
more suited to exposing and exploiting group structures. This formalism will include some description of
the code(s), how unitary operations act on elements of the code(s), and how projective measurements act
on elements of the code(s). Using those results, we must then provide a description of error detection and
correction within the formalism.

2.2.1 Description of the code in Stabilizer formalism

Given a group, G, a stabilizer is a sub-group S ⊆ G, which fixes every element of some vector space VS (i.e
for all |ψ〉 ∈ VS and s ∈ S, s |ψ〉 = |ψ〉). Instead of concerning ourselves with VS and the states therein
directly, we will instead describe VS via the generators of S. Hence an [n,k] stabilizer code consists of a
vector space VS stabilized by some S =< g1, ..., gn−k > and a set of orthogonal spaces corresponding to the
possible errors.

The group G of interest in our formalism is the Pauli group of rank n, Gn. This group is defined to be
set of all n fold tensor products of Pauli matrices together with those related by multiplicative factors of
±1, ±i. This provides us a set of operators which acts on a vector space of size 2n. Hence our code has the
structure: some VS ⊆ C2n described by some set of n− k generators and subspaces of C2n orthogonal to VS .

Note that for any given subgroup S, VS might have a very trivial structure. Of course, such VSs would
not be particularly useful as part of a QECCs. After some consideration it is possible to show that VS is
nontrivial iff −I 6∈ S, and the generators of S commute. Further, if these requirements are met ‖VS‖ = 2k.
This essentially means that for some [n,k] stabilizer code we are encoding k qubits into an 2n dimenional
space where the valid codewords (where no errors have occured) occupy the subspace VS of dimension
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2k and corrupted states occupy subspaces of the 2n dimensional space orthogonal to VS (the traditional
interpretation of the [n,k] notation).

2.2.2 How unitary operators act in Stabilizer formalism

Normally, once we have our code we’re interested in how unitary operations might act on its elements (e.g
U |ψ〉) in order to capture the code’s dynamics. Instead we’re going to look at what unitary operations do
to our list of stabilizers to accomplish the same task. For instance if we start with some VS

s |ψ〉 = |ψ〉 ∀ |ψ〉 ∈ VS∀s ∈ S
→ U |ψ〉 = Us |ψ〉 = UsU†U |ψ〉 ∀ |ψ〉 ∈ VS∀s ∈ S

We see that our new group of stabilizers is USU†.
For our formalism to remain convenient, we need the following property USU† ⊆ Gn, or, more generally

UGnU
† = Gn. Otherwise, the new stabilizers might not have the simple algebraic properties associated with

g ∈ Gn which we’d like to exploit in our detection/correction schemes (described later).
The set N(Gn) = {U : UgU† ∈ Gn} is called the normalizer of Gn.

2.2.3 How measurements are represented in Stabilizer formalism

Measurement in the computational basis may be described by observables corresponding to g ∈ Gn in our
formalism. Given some state |ψ〉 with stabilizer < g1, ..., gn > we want to examine the measurement’s effect
on that stabilizer via changes to its generators. Note that the stabilizer < g1, ..., gn > is particular to the
state, but < g1, ..., gn−k >= S are stabilizers for all states in VS .

Since g ∈ Gn, g will either commute or anti-commute with elements of the stabilizer < g1, ..., gn > for our
state|ψ〉.

If g commutes with elements of the stabilizer then either g or −g is an element of the stabilizer. Either
way, the measurement will yield 1 with probability 1, and neither the state, nor the associated stabilizer will
change.

If g anti-commutes with elements of S we follow a particular procedure. We organize < g1, ..., gn > so the
first m elements anti-commute with g. We can ignore all m − 1 elements after g1, since if some {g, g′} = 0
and {g, g′′} = 0 then [g, g′g′′] = 0. Then we replace g1 with ±g depending on the result of the measurement
(+ for a result of 1, - for a result of minus 1).

2.2.4 Description of error detection and correction in the Stabilizer formalism

First we will consider the sorts of errors we can expect in general, and whether or not we can correct those
errors. We restrict ourselves to errors E ∈ Gn (again, not very limiting, given that general error can be
modeled as combinations of bit/phase flips).

If E ∈ Gn then there are only a few ways in which it can have an effect on the generators of the stabilizer.
It turns out, in short, that those errors correctable by our code are those errors
{Ei ∈ Gn : ∀Ei, EjE†iEj 6∈ N(S)− S}

where N(S) is the normalizer of the stabilizer (defined the same way as it was above for Gn).
One can get a sense for why this is by examining the possible interactions between an error E ∈ Gn and

the generators of the stabilizer of V (S). With some effort, one can see that if E anti-commutes with some
generator of the stabilizer, we go to an orthogonal subspace of the code:

If the spaces weren’t, then both E and g should stabilize some vector shared between the original subspace
and the new subspace: Eg |ψ〉 = |ψ〉. However, E and g should also anti-commute Eg |ψ〉 = −gE |ψ〉 = − |ψ〉.
Meaning |psi〉 is necessarily zero, a contradiction.

If E commutes and has an effect on the state (i.e. E is not a stabilizer of |ψ〉), we cannot correct the
error, since there is no guarantee of orthogonality. It’s trivial to see that it is exactly these kinds of errors
belong to N(S)− S (those elements of Gn that commute with S, but are not part of S).

The following methodology can be used to detect and repair any (detectable) errors. Recall that all the
generators of S, g1, ...., gn−k ∈ Gn are, in fact, observables. We will simply measure each g1, ..., gn in turn
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producing a sequence of results. Due to the results of our above sections, this operation will not collapse the
state, whether or not the state has been corrupted (consider the effect of measurement gi on the stabilizer

of the corrupted state < Ejg1E
†
j , ..., EjgnE

†
j >). If there was an error Ej ∈ {Ei}, we generate a ”syndrome”

some list of values, βk, which are determined by our consideration of the action of a unitary operation.
EjgkE

†
j = βigi. On detection of this error we simply apply the inverse E†j to correct.

The above assumes that the error has a unique syndrome. If it does not, it actually suffices to correct
for one of the errors selected at random. This is due simply to the fact that if two errors have the same
syndrome, then their composition E†jEk ∈ S.

It is also typical to define a distance akin to classical linear codes. Clasically we do this via the minimum
number of places two codewords can differ. In our case this is the minimum weight of an error out of the
class of correctable errors (number of non-identity contributions to the tensor product Ej ∈ {Ei}). It is
possible to then show that a code of distance d = 2t+ 1, t ∈ N can correct up to t errors.

2.3 CSS Codes Generalized to Fp

While we generally treat quantum circuits and computational processes within the framework of the two
dimensional computational basis, this framework is contingent on the computer being constructed from two-
state quantum objects, qubits, such as isolated electron spins. In practice implementing a working physical
quantum computer may be dependent on quantum systems that have more than two eigenstates, such as
nuclear spins or hyperfine spin states. For this reason we would like to have a generalization for CSS codes
that encompasses these higher level qubits. We define such quantum systems that have p eigenstates to be
p-qudits. For these systems we define our CSS codes over the field Fp rather than F2.

In considering error correcting codes for such systems we must first extend our definition for the types of
errors that can occur. A qubit may undergo a binary bit-flip. The extension of the bit flip for a p-qudit is
given by:

B |a〉 = |((a+ 1) mod p)〉 .

Successive applications of the generalized bit flip sequentially iterates the p-qudit through all of its eigenstates
until it returns to it its original state. The p-qudit extension of the phase-flip error is given by:

P |a〉 = ωa |a〉

It is instructive to consider the specific case of when p = 2. We can see that these generalized forms do in
fact produce the familiar bit and phase-flip operators we are used to seeing in two state qubit systems.

In the same way that X, Z, and XZ can be used to construct the other Pauli matrices, we can also
construct the set of higher dimensional Pauli matrix analogues through all possible compositions of B and
P ,

BcP c
′
∀c, c′ ∈ Fp.

These matrices form an orthonormal basis for the space of all matrices that act on a p-qudit, as do the
m-fold tensor products of these matrices for all matrices that act on m p-qudits. Therefore, any unitary
matrix operating on the m-tensor space of m p-qudits may be written as a linear combination of the set of
these extended Pauli matrices.

With qubits we are able to correct spin flips by transforming the state into Fourier space via the Hardamard
operation, correct a bit flip error and then transform back into the original space via a second application
of the hardamard gate. This is possible because, for qubits, a phase-flip on a qubit appears as a bit-flip on
the same qubit in Fourier space.

With the Fourier transform generalized for Fp

QFTl |a〉 =
1
√
p

∑
b∈F

ωlab |b〉
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we are similarly able to map bit-flip errors on a p-qudit to a phase-flip error and vice versa with the relations:

∀c ∈ Fp, QFTlP cQFT †l = Bc/l, QFTlB
cQFT †l = P cl

where ω is the same phase used in the definition for the generalized phase-flip.
Just as a quantum error correction procedure which corrects errors that take the form of the Pauli

matrices is able to correct a general error, it may be shown that under this generalization the same is true
for a procedure which can correct the higher dimensional Pauli matrix analogues.

We may therefore use the stabilizer formalism to develop a CSS for p-qudits using these generalized
”Pauli” errors to construct the necessary code-spaces.

2.4 Polynomial Codes over Fp

Polynomial codes are a small subset of of CSS codes which we define in the following way. First we define
the set of all polynomials over p of degree at most d, Vd = {f(∗) ∈ Fp[x] : deg(f) < d}. Then we choose m
non-zero elements α1, ..., αn ∈ Fp. Finally we define the two classical codes which comprise the CSS code:

C1 = {(f(α1), ..., f(αm)) : f(∗) inVd} ⊂ Fmp
C2 = {(f(α1), ..., f(αm)) : f(∗) inVd, f(0) = 0} ⊂ C1

Where the encoding of state |a〉, a ∈ Fp is

|Sa〉 =
1√
pd

∑
f∈Vd,f(0)=a

|f(α1), ..., f(αm)〉 =
1√
pd

∑
ω∈C2

|ω + ~a〉

When we write a vector in a ket we mean that each element of the vector is outer-producted with the
other elements in order. For example, |a, b, c〉 = |a〉 ⊗ |b〉 ⊗ |c〉.

Polynomial codes were of particular interest [1] because they allow for the implementation of fault tol-
erant logic in a particularly elegant way. Specifically, we will be exploiting the algebraic properties of the
interpolation coefficients of a given polynomial.

3 Models of Error

In practice quantum computers are difficult to implement. The reason for this is that they require the
qudits they are constructed from to be isolated from the environment and remain completely unaltered by
any processes other than the logical gates which are applied to them. In reality such isolation is extremely
difficult to achieve. Undesired interactions with the qudits surroundings, or even imperfect executions of
quantum gates and measurements all introduce the possibility of error. These errors are by nature random,
so in our modeling we consider faults to be probabilistic events that occur throughout the evolution of a
quantum circuit. We will consider the ramifications of the error rates and circuit designs that will inform
the basis for fault tolerant quantum computations.

3.1 Circuit Structure and Faults

A quantum circuit is constructed from some set of operational qudits and a time ordered sequence of quantum
gates that perform operations on subsets of the qudits. We define the gates of a quantum circuit with t
number of gates to be the set of operators gi, where i runs from 1 to t. Using the density operator formalism
we may write the final state output from a quantum circuit as,

Q ◦ ρ = gt ◦ ... ◦ g3 ◦ g2 ◦ g1 ◦ ρ
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Figure 1: Example of error propogation though a CNOT

where ρ is the density matrix for the input state. The order of the composition of the gates are topologically
determined by the structure of the circuit, with some variation allowed for gates that can be said to be
implemented at the same time. The above description of a quantum circuit is without error. In order to
introduce error we must introduce the notion of a location in a quantum circuit. A circuit may divided into
some integer number of time steps, such that a given gate occurs at some time step t. Locations in a circuit
are defined by the gates, rather by the time step at which the gate occurs, and the set of input qudits of
the gate. We introduce error into this model by applying fault operators, Ei, at locations in the circuit in
between times steps. The resultant output of a circuit with a specific set of faults is then,

QE ◦ ρ = Et ◦ gt ◦ ... ◦ E2 ◦ g2E1 ◦ g1 ◦ ρ.

Each Ei represents the the composition of individual faults on each qudit. One specific set of Ei, denoted by
F is called a fault path. It is the list of specific faults that occurred in a single execution of the circuit.

To design a robust, fault tolerant procedure we need to consider all possible fault paths that can occur
in that circuit. In general we assume that all faults have equal probability p, known as the error rate, of
occurring. Hence larger fault paths are less likely to occur than smaller ones. In defining a general error rate
of p we make the assumption that the faults are uncorrelated both in time and space. The output state of
a noisy circuit is given by, (∑

F
Pr(F)QE(F)

)
◦ ρ

where Pr(F ) is the probability of the fault path F occurring.
It is important to distinguish the difference between faults and errors. A fault is a noise operation that

occurs at a specific location within a circuit. The application of a fault on a quantum state in turn can
produce a deviation of the state from the correct density operator. Whereas a fault is an event localized at a
specific location in the circuit, an uncorrected error will persist throughout the evolution of the circuit and
potentially propagate to other qudits.

3.2 Error Propagation and Spread

By using quantum error correction and encoding individual qudits into larger blocks of qudits we can make
an operation robust to errors. However, even after implementing error correction there is yet another obstacle
to overcome. Meaningful quantum computations necessitate logic gates that operate directly on the encoded
states. By performing single quantum gates on the many encoding qudits simultaneously we open the door
for error to propagate to other qudits in the circuit.

As an example consider an arbitrary control gate on two qudits. If an uncorrected fault occurred on the
target qudit at some time before the control gate, after applying the control gate the error is still limited to
the the target qudit. If instead the error had occurred on the control qudit (see Fig. 1), not only will the
error persist on the control qudit but the target qudit will accumulate that error as well:

While error correction can remove errors it is not possible to perform error correction at every point along
a circuit. For this reason, when constructing a quantum circuit we need to do so in a way that limits how
”far” an error is allowed to propagate to other qudits.

When using encoded qudit blocks to correct for some number of errors, a single error no longer implies a
failed logical operation. Even so, when implementing an encoded gate such as a single encoded control gate,

6



Figure 2: Example of a spread 2 circuit

attention needs to be paid to how the individual qudits in the control block are coupled via basic gates to
the qudits of a target block.

As an example, consider the execution of an arbitrary control gate using a three qudit code that can
correct for up to one error in the block. If we performed that operation using the encoded procedure shown
in the Fig. 2, an error in the top qudit of the control block produces two errors in the target block, and the
encoded target qudit is no longer recoverable. We define the extent to which errors in an encoded block will
propagate to the other encoded blocks in an operation as the ”spread”.

More precisely, we say that a procedure which has some fault path with k faults, that operates on encoded
blocks with no more than f qudits per block, using a code that can correct up to q errors, has a spread
of l if l(f + k) ≤ q − l. For a procedure to have a spread of l means that for each error that occurs in a
particular input block for that operation, each of the output blocks from that operation will gain at most l
errors. Therefore if we use a code that can correct at most one error in a block, we must use only procedures
with a spread of 1 in order for it to function reliably.

4 Fault Tolerance

4.1 Introdution and Broad Concepts

Given the error model presented in the previous section, we need to consider what procedures and strategies
are necessary in order to implement a quantum circuit fault tolerantly. By fault tolerant circuit we mean that
given some error rate p for all its elements, the circuit may undergo some number of faults in its execution
but still produce the correct output state that would have been produced had no faults occurred. A circuit
being fault tolerant does not mean it is robust to any number of faults at any set of locations in the circuit.
No matter what code or procedure used there will always be some fault path that corrupts the qudits to an
extent that is unrecoverable. Instead the goal is to produce a circuit robust to some (physically reasonable)
level of noise. This is accomplished by using fault tolerant procedures for state preparation and gates that
limit the spread and the probability of error. By implementing a circuit fault tolerantly we are able improve
from circuits that operate on single qudits in which each element has an error rate of p, to block encoded
procedures with an overall fail rate of order p2. As we will see in the discussion of the threshold theorem,
by using multiple layers of encoding in which each layer utilizes fault tolerant procedures, it is possible to
reduce the failure rate of a quantum circuit to an arbitrarily low level.

4.2 Fault Tolerant Logic

The goal of any program to produce fault tolerant logic gates is to fault tolerantly implement a universal
set of gates. Essentially, the goal is to implement a set of gates that will allow for any arbitrary quantum
computation. However, proofs of universality are rather complex and dense [1] and do not serve to illuminate
the general design principles of fault tolerant logic. Instead, we will introduce those general design principles,
and then provide an in-depth example of a particular gate which highlights the core concepts.

A general strategy for creating fault tolerant logic is to implement gates on encoded states in a transversal
or semi-transversal fashion. A transversal implementation of a gate means the following. Suppose we have
an n qudit gate acting on n encoded qudits. Let’s label the dits of each encoded block 1 through m (m the
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m = 0 |a〉
m = 1 |b〉
m = 2 |c〉
m = 3 |d〉
m = 0 |e〉 •
m = 1 |f 〉 •
m = 2 |g〉 •
m = 3 |h〉 •

Figure 3: An example of transversal application of a CNOT between two encoded qudits.

length of the code). We apply the n qudit gate to each encoding dit labeled by the same label (see Fig.
3). The definition of a semi-transversal application is very similar, and contains only one salient difference.
Instead of simply applying the gate on each of the qudits, we instead apply slightly different gates at each
index. How the encoding gates are modified depends on what gate we’re trying to encode.

The fault tolerance of this method of encoding gates is trivial. For an encoded n-qudit gate only n qudits
will be involved in any encoding gate, and therefore the encoded gate has spread n (that is, one error in one
of the qudit blocks can, at most, spread to n other qudits in the other qudit blocks).

The correctness of these methods, however, is less evident. That is, we do not yet know that the encoded
gates acting on encoded states act in the correct fashion. Many cases are very easy to check, and the
transversal/semitransversal implementations require very little modification.

In this section we will present one of the more challenging cases, the quantum fourier transform. It turns
out that the QFT can be implemented semi-transversally using polynomial codes; however, there are some
modifications to the strategy required to do this effectively. We follow [1].

Recall our definition for the fourier transform over the fieldFp

QFTl |a〉 =
1
√
p

∑
b∈F

ωlab |b〉

Consider the semi-transversal application of this operation to an encoded qudit:∣∣Sda〉 =
1√
pd

∑
f∈Vd,f(0)=a

|f(α1), ..., f(αm)〉 =
1√
pd

∑
ω∈C2

|ω + ~a〉

Where d indicates the maximum degree allowed for the encoding polynomials.

QFTc1 ⊗ ...⊗QFTcm |Sa〉 =
1√
pd+m

∑
b1,...,bm∈Fp

∑
f∈V,f(0)=a

ω
∑m

l=1 clf(αl)bl |b1, ..., bm〉

We now define a set of unique polynomials s.t. b(αl) = bl with degree deg(b) < m−d. If we make this choice
we see that the polynomial f(x)b(x) is of degree deg(f(x)b(x)) < m We choose c1, ..., cm as the interpolation
coefficients of the f(x)b(x). This means that

∑m
l clf(αl)f(βl) = f(0)b(0)

→ QFTc1 ⊗ ...⊗QFTcm |Sa〉 =
1√
pd+m

∑
b1,...,bm∈Fp,deg(b(x))<m−d

∑
f∈V,f(0)=a

ωb(0)f(0) |b1, ..., bm〉 =

1√
pm−d

∑
b1,...,bm∈Fp,deg(b(x))<m−d

ωb(0)a |b1, ..., bm〉 =
1√
pm

∑
b∈Fp

ωab√
pm−d

∑
b1,...,bm∈Fp,deg(b(x))<m−d,b(0)=b

|b1, ..., bm〉

By considering the norm of the vector we can show that all bs in the second sum not represented by a zero
of one of our selected polynomials vanish yielding

QFTc1 ⊗ ...⊗QFTcm |Sa〉 =
1√
pm

∑
b∈Fp

ωab
∣∣Sm−d−1b

〉
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Almost as desired. We’d like the state to be encoded in polynomials of degree d. Thankfully, this problem is
easily remedied via a process called degree-reduction, which can be accomplished by quantum teleportation
[1]. The degree reduction procedure is not shown here, for the sake of brevity.

This example serves to demonstrate the key concepts of fault tolerant logic and how polynomial codes
might be exploited in implementing semi-transversal encodings of essential gates.

4.3 Fault Tolerant Zero-State Preparation

At some point in any consideration of fault-tolerant state preparation, we must assume that the procedures
used to prepare prospective states are not fault tolerant. The general approach used to overcome the issues
posed by this dilemma is as follows:

1. Assume that the majority of prepared states have no more than the number of errors that our error
correcting codes can correct.

2. Define the sets T (set of all states with < k errors) and F(set of all states with ≥ k errors).

3. Select 2 states at random from the pool of prospective states, |ψ〉 and |φ〉.

4. Try to determine the relative position of |ψ〉 and |φ〉 in T and F by detecting errors in a novel way.

5. Use whichever state |ψ〉 , |φ〉 ∈ T

Note that the above procedure itself has to be resilient to a certain number of faults.
We present one implementation of such a procedure that is resilient to one fault [1]. Throughout this

consideration we will assume that only one of the prospective states has any error associated with it. This
algorithm utilizes a pool of 5 prospective encoded zero states |S0〉 prepared from states of the form |0m〉 (m
the length of the code). We will label each state i = 1, 2, 3, 4, 5 . The first and fifth prospective states are our
analogues of |φ〉 and |ψ〉. Assume all logic gates applied are implemented via fault-tolerant(transversal/semi-
transversal) methods.

We begin by addressing the possibility of dit-flips in state 1.
To do this we will apply a CNOT gate from state 1 to state 2. Then we perform a classical computation

on the qudits of state 2. We copy each dit of state 2 m times, we then use these copies to perform m
independent calculations, checking whether or not state 2 is of distance 1 away from C2 or not. We record
the results of these calculations in m ”dit flip indication bits”, let’s call the string comprised of these bits β1.

We would now like to address the possibility of phase flips in state 1. However, there is the danger of dit
flips having occurred in state 3. If we apply the QFT and then the CNOT gates, we run the risk of errors
back-propagating and fully corrupting state 1. We solve this problem via the following.

We will do the same procedure as above between states 3 and 4 to produce another m ”dit flip indication
bits”, let’s call the string comprised of these bits β3. We will then apply a QFT to state 1 and 3, and
conditionally apply a CNOT gate from from 1 to 3 depending the ith entry of β3. This may also be
described as the application of a generalized Toffoli applied between the ith qudits of states 1, 3, and ith
entry of β3. The same classical computation we did for dit flips follows, using the dits of state 3. This
produces m ”phase flip indication bits”, ξ1. We complete the phase flip detection by applying QFT † to state
1.

Finally, we compile the results of the testing to determine if state 1 belongs to T or F. We do this by
checking if there exists one bit location for β1 and ξ1 that, if changed, will take β1 into C2 and ξ1 into C1

(of the dual code). If so we use state 5 since state 1 belongs to F, and if not we use state 1.
Now, let’s try to make sense of this procedure. The first two parts of this algorithm make intuitive sense.

Essentially we’re compiling information about possible dit and phase flips in state 1. Why the final part of
the algorithm works is less obvious, and the underlying reason is beyond the scope of this report.

We conclude this section with some comments on the above procedure, and fault tolerant zero-state prepa-
ration in general. Note that the error detection in this procedure was all done classically, and hence would
not be applicable if we wanted to use it to do error correction in the circuit we’re using for the computation.
Further, there is a large overhead in the number of states required to produce a single usable state. This
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quality of our procedure reflect general trends in fault tolerant zero-state preparation procedures[3]. Finally,
recall that this particular algorithm is only robust up to a single fault; however, it can be concatenated with
itself to form algorithms that are robust up to the desired number of faults [1].

With these tools in hand, we can now describe how to perform, fault tolerantly, the most critical procedure
relevant to reliable quantum computing.

4.4 Fault Tolerant Error Correction

Now that we’ve come to the most important fault tolerant procedure, ironically, there isn’t much that needs
to be said. The considerable legwork in developing useful QECCs, fault tolerant logic, and fault tolerant
zero-state preparation leaves the procedure remarkably easy to describe.

First, we use fault tolerant logic to copy the error syndrome from the block to the ancillary zero-state
(which has been prepared fault tolerantly). To do this we define the following unitary operation utilizing Mi

the measurement operators associated with our fundamental errors for the field Fp:
U |Sa〉 |S0〉 =

∑
i(UiMi |Sa〉) |Si〉

It’s easy to see that this operation preserves inner products in the QECC since [2]:〈
Sa|
〈
0|U†U |Sb

〉
|0
〉

=
∑
ij

〈
Sa|M†iMj |Sb

〉
δij =

∑
i

〈
Sa|M†iMj |Sb

〉
= 〈Sa|Sb〉

We then use fault tolerant logic to correct any errors that have occurred by using controlled gates which
correspond to our fundamental errors for Fp.

The advantage of this sort of procedure is that it does not require intermediate measurements which
can be technically complicated to implement. It does, however, require a high overhead of fault tolerantly
prepared zero-states (a procedure that already has an intrinsically high overhead).

5 Threshold Theorem

Even the cleverest of error correcting codes are subject to damage from the random fluctuations resulting
from the quantum nature of any real-world circuit we could attempt to physically build. In this paper, we
have considered a few particularly clever codes, and the different ways they can be used to make procedures
more resistant to such fluctuations and faults; it remains, however, to be shown that such strategies can
actually be relied upon to work. Intuitively, we need to show that there is some benchmark such that, if we
reach it, our computations can be considered reliable, and that achieving circuits which meet said benchmark
are physically realizable with an acceptable (i.e. sub-exponential) amount of effort. The precise statement
of the theorem is as follows:

The Threshold theorem for probabilistic noise [1]:

Let ε > 0. Let C be a computation code using a set of gates G. There exists a constant threshold
ηc > 0 and constants c1, c2, c3 such that the following holds. Let Q be a quantum circuit with n
input qudits (qudits), which operates in t time steps, uses s gates from G, and has v locations.
There exists a quantum circuit Q′ which operates on n ∗ O

(
logc1

(
v
ε

))
qudits (qudits), for time

t∗O
(
logc2

(
v
ε

))
, and uses v∗O

(
logc3

(
v
ε

))
gates from G such that, in the presence of probabilistic

noise with error rate η < ηc, Q
′ computes a function which is within ε total variation distance to

that computed by Q.

In essence, the theorem states that, given any desired accuracy for the final result, we can achieve that
accuracy simply by keeping the noise in our circuit below some particular constant threshold. Modern
circuits aren’t there yet, in the sense that the best noise level we’ve been able to manage is still a few orders
of magnitude worse than the theoretical thresholds we need to beat, but we nonetheless have the important
fact that we can, in principle, create reliable circuits.The proof of the theorem is rather mathematically
dense, so in this paper we seek only to illustrate the general idea of the proof [1, 2].

The whole proof hinges on the idea of recursive encoding, i.e. simulating a qudit in a code Ck with a
block of qudits in a code Ck+1, and iterating until the errors have been brought down to an acceptable level.
Mathematically, we can see that if the failure probability in the original circuit C0 was p0 = p, and if each
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single qudit in C0 is encoded by a block 2m− 1 qudits in C1 that, due to majority voting, we would need m
failures to occur at the C1 level in order to cause an overall failure. The probability of failure would thus be
proportional to the mth power of p, namely cpm. If we then performed an additional layer of coding, taking
each logical qudit in C1 into a (2m− 1)-block in C2, the error rate would thus be c (cpm)

m
= cm+1pm

2

;

next, for C3, we’d get cm
2+m+1pm

3

, and so on. Inductively, we see that the code Ck should have a failure

rate cm
k−1+mk−2+...+1pm

k

= c
mk−1
m−1 pm

k

= c
−1

m−1

(
c

1
m−1 p

)mk

.This means that, for p < c
1

m−1 , the failure rate

decreases super-exponentially with k, meaning we have an error threshold below which recursive encoding
can give us arbitrarily low effective failure rates!

We also need to show that this can be done with a reasonable amount of effort; the super-exponential
dependence on k implies that k shouldn’t have to get that large for the circuit to work for us, but it would
still be nice to have some estimate for it. Let d be a constant representing the ”size”of the original circuit,
in the sense that d is an upper bound for the number of operations that the circuit will do. When we go
from C0 to C1 we’re replacing each one qudit with a block of 2m − 1 qudits, effectively increasing the size
of the circuit to dm.

Inductively, we see that the size of Ck should be d(2m−1)k, which is merely exponential in k. This means
that the size of the simulating circuit is merely a poly-logarithmic function of the desired error rate, as the
theorem itself stated.

6 Conclusion

Given the threshold result, it becomes apparent that errors are not, in principle, a barrier to reliable quantum
computation. It also provides a concrete goal in the design of quantum computers: it specifies exactly how
noisy our system can be. In modern research, there have been many improvements on the theoretical
threshold presented in this paper (even at the time the result, although the most general, was not the best
threshold available). Nevertheless, a thorough comprehension of the concepts aids us in understanding a
great deal of the literature on quantum computers.
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