
CIS 410 Final Report on Hidden Subgroup Problem

Zhimeng Wang, Dongmin Roh, Matthew Jagielski

June 8, 2016

1 Motivation

The hidden subgroup problem (HSP) is an computational algebra problem which has been
shown to have a lot of interesting consequences and motivations. For example, the Shor’s
quantum algorithm of factoring integers and solving the discrete logarithm problem can be
reduced to solving the HSP on finite abelian groups.

Definition 1. Given a group G, a subgroup H ≤ G, and a set X, a function f : G → X
hides H if ∀g1, g2 ∈ G, f(g1) = f(g2) iff g1H = g2H, that is, g1, g2 are in the same coset of
H.

Definition 2. Now, the Hidden Subgroup Problem (HSP) is a problem with inputs:
a group G, a set X, and a function oracle f : G → X hiding a subgroup H. The function
oracle uses log(| G | + | X |) bits. The desired output is a generating set of H.

It is known that there exits a quantum algorithm which solves with certainty a hidden
subgroup problem of an arbitrary finite group in a polynomial (in log|G|) number of calls to
the oracle. In addition, quantum computers have been shown to have very good speedups
for some instances of the problem. In fact, because quantum computers can factor integers
much faster than classical computers can, quantum computers can solve the HSP on finite
abelian groups in polynomial time.

Two unknowns regarding the HSP are whether the symmetric group and the dihedral
group have efficient quantum algorithms for solving HSP. If an efficient quantum algorithm
were to be found for the symmetric group HSP, we would have an efficient algorithm for graph
isomorphism, a very important problem in theoretical computer science and for Eugene Luks.
A polynomial time dihedral group HSP algorithm would give a polynomial time algorithm
for solving the shortest vector problem on lattices, a problem which is...(line truncated)...

Our group has some background in abstract algebra and algebraic number theory, so
this is an attractive topic for us to explore. Also, one of us is studying the shortest vector
problem for his undergraduate thesis, so this is of increased interest.

1

2 Quantum Complexity Results

We realize that many of the well-known quantum algorithms such as Deutsch, Simon, Order-
finding, Integer factorization, etc are instances of the hidden subgroup problem. Using an
algorithm similiar to these problems, we’ll see that for a finite abelian group we can solve
the HSP efficiently.
Although no efficient quantum algorithm for non-abelian groups fulfills polynomial time
complexity, the quantum query complexity is polynomial. This is exponentially better than
any classical algorithms.

2.1 Quantum Time Complexity of an Abelian Group

We give an outline of the algorithm that solves the HSP for an abelian group G in a polyno-
mial number of operations in log|G|. This algorithm solves with bounded error; we can find
a subset that generates the hidden subgroup with probability at least 2

3
. It is worth men-

tioning that for Abelian groups of smooth order1, this success probability can be improved
to one.
Recall that finite Abelian groups are isomorphic to a product of finite cyclic groups of prime
power order. This allows us to perform the quantum fourier transfrom of f over G in an
efficient way. (Decomposing an arbitrary abelian group is a difficult problem. However,
Shor’s quantum algorithm for factorizing integers can be applied to decompose an abelian
group efficiently)
Suppose that an abelian group G is isomorphic to a product of cyclic groups Zt1×Zt2×· · ·×
Ztk . Consider applying the operation FG = Ft1 ⊗Ft2 ⊗ · · · ⊗Ftk , which performs a quantum
fourier transform to each ith state, to some element g ∈ G (Here, |g〉 = |g1〉 |g2〉 · · · |gk〉).
Then, we attach an ancilla bit and send the state through the black box to obtain

1√
|G|

∑
g∈G

|g〉 |f(g)〉

We perform a measurement on the second register to get some value f(g
′
). This leaves the

first register to be in the state
1√
|H|

∑
h∈H

∣∣∣g′
+ h
〉

where H is our hidden subgroup. We apply the operation FG once again then measure this
first register. With certainty we get a uniformly random element of H⊥, which is a dual
group of H.2 Thus, repeating these steps about n = dlog|G|e many times gives with high
probability a set of generators g1, . . . , gO(n) of H⊥. The linear congruences corresponding
to these elements determine H; randomly pick a solution to each linear congruence to get
a uniformly random element of H, repeat this O(n) times gives us a set of generators of H
with high probabilty.

1The order of a group G is smooth if all prime factors are at most logc|G| for some fixed constant c
2The dual is defined as H⊥ = {g ∈ G : χg(h) = 1,∀h ∈ H} where χg(h) =

∏k
i=1 e

2πigihi
ti

2

2.2 Quantum Query Complexity of a Finite Group

Our motivation is to find an efficient quantum algorithm which can solve the HSP for any
arbitrary finite group G in a polynomial calls to the given oracle. Given r many distinct
subgroups of G, we are looking for a generating set for one of the subgroups. We can assume
that any algorithms for the HSP always output a subset of a subgroup H; if an algorithm
outputs some subset X * H, we simply find the intersection of X with H by keeping x ∈ X
only if f(x) = f(1G).
Let f be a function satisfying the conditions of the HSP. Fix an ordering of the distinct
subgroups H1, H2, . . . , Hr such that |Hi| ≥ |Hi+1| for all 1 ≤ i ≤ r.3 Also let N = |G| and
consider n = log|G| to be the input size. 4

Theorem 3. There exists a quantum algorithm that solves the HSP for any finite group G
in O(log4|G|) calls to the oracle. The algorithm has exponentially small error probability in
log|G|.
The algorithm considers 2 + 2s registers, where s is a positive integer chosen to lower the
error probability: 1st contains a subgroup index 1 ≤ v ≤ r, 2nd contains a counter 1 ≤ l ≤ r,
remaining 2s are pairs of couplets so that in each couplet the first contains an element of
G and the second some image of f . We call the first register in a couplet as a ”subgroup”
register and the second as a ”function” register.
We say that a function f is H-periodic if f is constant of the left cosets of a subgroup H
of G. H being a hidden subgroup of f is an instance of f taking distinct values on distinct
cosets of H.
A left translation of a subgroup H is a subset T ⊆ G such that for any g ∈ G, g = th for
some t ∈ T and h ∈ H.
We define an operator Test so that Test = Testr · · · · ·Test2 ·Test1, where each unitary operator
Testi tests whether f is Hi-periodic. Each Testi is defined by Testi = Qi⊗Ps,i+I⊗P⊥s,i where

Qi :

{
|0〉 |0〉 7→ |i〉 |1〉
|v〉 |l〉 7→ |v〉 |l + 1〉 , if l > 0

and Ps,i =

(∑
t∈Ti

|tHi〉 〈tHi| ⊗ I

)⊗s
Here Qi acts on the first two registers so that once the second register is increased from 0 to
1, the first register stays the same, and Ps,i is the projector of the s couplets. The effect of
Testi is that Qi is applied on the first two registers if s subgroup registers are in coset states
of Hi.
We create an initial state to be

|Ψinit〉 = |0〉 |0〉 ⊗

(
1√
N

∑
g∈G

|g〉 |f(g)〉

)⊗s
by s many query calls.

3if a function f is H-periodic then it is also H ′-periodic for a proper subgroup H ′ of H. So we want to
test for bigger subgroups first.

4We know that the number of r is 2O(n2) since any Hi is generated by a set of at most n elements of G

3

Lemma 1. If f is Hi-periodic, then

Testi |Ψinit〉 = |i〉 |1〉 ⊗

(
1√
N

∑
g∈G

|g〉 |f(g)〉

)⊗s

Proof. First, we realize that if f is Hi-periodic then s subgroup registers are in super-
position of coset states |tHi〉 = 1√

|Hi|

∑
h∈Hi
|th〉 for t ∈ Ti, a translation of Hi. Also,

f being Hi-periodic implies that f(t) = f(th) for all t ∈ Ti and h ∈ Hi. So the state
1√
N

∑
g∈G |g〉 |f(g)〉 = 1√

N

∑
t∈Ti |tHi〉 |f(g)〉 lives in +1-eigenspace of P1,i, and hence Ps,i

leaves the s couplets untouched. Thus, the lemma follows.

At the end of the day, what we want to do is to apply the unitary Test to the initial state
|Ψinit〉 to get |Ψfinal〉. Then, we measure the first register of |Ψfinal〉 to get the subgroup
index v, and if 1 ≤ v ≤ r we output a generating set for Hi, otherwise we output 1G. But
our output may be a wrong answer.
As we iterate through r tests for the subgroups, we would wish to only alter the state
marginally so that it is safe to continue to test for the next Hi+1 subgroup.

Lemma 2. If f is not Hi-periodic, then the distance
∣∣(Testi |Ψinit〉)−|Ψinit〉

∣∣ is at most 2
2s/2

.

The next lemma follows since distances add up linearly.

Lemma 3. If f is not Hi-periodic for any 1 ≤ i ≤ j, then the distance
∣∣ |Ψj〉− |Ψinit〉

∣∣ is at

most 2j
2s+2 .

At the beggining in the Theorem, we stated that the error probability is exponential. Great
news is that we can make the algorithm exact by the use of classical precomputing and
amplitude amlification.
First, we partition the set of subgroups {H1, H2, . . . , Hr} into Y1/4 and Y3/4. We’ll look at
a new algorithm called ExactTest that identifies which of the partition the hidden subgroup
belongs to.

Lemma 4. Consider measuring the ancilla qubit of the state ExactTest(|Ψinit〉 ⊗ |0〉). The
probability that the outcome of this measurement is 1 is 3/4 if the hidden subgroup H is in
Y3/4, and it is 1/4 if H is in Y1/4.

In order to describe what ExactTest is, we need to define few things. Let Prob[Hi|H] be the
probability that the measurement outcome of the first register of |Ψfinal〉 is i, conditioned
on the hidden subgroup being H. Let M be an r × r matrix over [0, 1] with each row and
column indexed by a subgroup. Let entry (H,Hi) of M be Prob[Hi|H]. Let y be an r × 1
vector with entries from {1/4, 3/4} and each entry indexed by a subgroup. Let x = M−1y.
Every entry of x is in [0, 1] for r ≥ 4.
Now we define ExactTest

ExactTest = R · (Test⊗ I)

4

When we apply ExactTest to the state |Ψinit〉 ⊗ |0〉, Test is applied to the state |Ψinit〉 and
leaves the ancilla unchanged. Then, R is applied, which is unitary that transforms the ancilla
qubit |0〉 into

√
1− xi |0〉+

√
xi |1〉, conditioned on the output register holding the subgroup

index i. Thus, the probability that the measurement outcome of the ancilla qubit being 1
is
∑

i xiProb[Hi|Hv], which is precisely the entry yv of y, where Hv is the hidden subgroup.
So we just need to set yv = 3/4 if Hv ∈ Y3/4 or set yv = 1/4 if Hv ∈ Y1/4. This proves the
lemma
The lemma showed us that we can distinguish between the two sets Y3/4 and Y1/4 with
probabilites 3/4 and 1/4, respectively. Now by using amplitude amplification, we can alter
these probabilities into being 0 and 1. Hence, we can distiguish between the two sets.
Applying binary search on the set of subgroups, varying the choices of Y3/4 and Y1/4, we can
find the hidden subgroup with certainty.

3 Shor’s algorithm reduct to HSP problem of ZN

Shor’s algorithm reduce the problem of factorization of a composite natural number N to
finding the order of an arbitrary non-identity element in ZN.

Definition 4. A group ZN is the set of remainders of a natural number N, up to congruence
class.

Definition 5. Order of an element a, where gcd(a,N) = 1, in ZN is defined by the smallest
natural number r, that ar ≡ 1modN .

Then by Lagrange’s theorem, the order of all units in ZN divide φ(N), the Euler function
value of N, that is less than N, when N is greater than one. The Shor’s algorithm begin with
choose an arbitrary number in a ∈ {2,,N-1} , then compute the gcd(a,N), if it is not 1,
then we already have a non-trivial divisor of N , if it is not one, then we apply it to oder
finding algorithm to find the order.Then we get:

ar ≡ 1modN
⇒ (a

r
2
−1)(a

r
2 + 1)

Then if N |a r
2
−1 , implies that a

r
2
−1modN ≡ 1modN , then r is not the period, this cannot

happen. Then N must divide a
r
2
+1, then compute gcd(a

r
2
−1, N) to get a non-trivial divisor

of N.
In this process the quantum order finding algorithm finds the period of this function:

f : N→ N

Then we have a function f(a) = xa modN and f(a) = f(b) iff a = b + rk, where k is an
arbitrary integer. Thus it hides the subgroup of of ZN which is generated by r. If the function
f : N → N has period r, then f(a) = f(b) iff a and b are in the same coset generated by r,
i.e. a ∈ b+ < r >.

5

Moreover, this type of hidden subgroup can also be applied to compute discrete loga-
rithms.

Definition 6. An unit in ring Zp is any element a∈ Zp, such that this is an element b where
a ∗ b = 1

Consider a prime p, in the group Zp, the units form a cyclic group of oder p − 1, that
is Z×p . Then, suppose there is two element a and b, such that a = brmodp, for same r, and
discrete logarithm is to compute r. That is to translate to the HSP in abelian group Z×p ×Z×p ,
where the kernel of the function is the generating set of the hidden subgroup and also the
discrete logarithm power.

f(a, b) = gax−bmodp

And the hidden subgroup is generated by (r, 1)

4 Dihedral Group HSP

4.1 Kuperberg’s Algorithm

Definition 7. The Dihedral Group of order 2N

DN = {r, s|ord(r) = N, ord(s) = 2, srs = r−1}.

This group can be thought of as the symmetries of a regular N -gon, with the rotation r and
the flip s.

Now, to solve the HSP on the Dihedral Group, we first need to characterize the subgroups
of DN . There are three such classes of groups:

• The cyclic subgroups generated by some k, where k ∈ ZN . These subgroups are normal
in DN .

• The order 2 ”flip” subgroups generated by some srk, with some k defined as above.

• The dihedral subgroups Dm, where m|N . Each of these is a semidirect product of one
subgroup of each previous type.

In 1998, Ettinger and Hoyer showed that it is possible to reduce the problem of solving
the hidden subgroup problem on DN with hiding function f , to calculating k assuming the
hidden subgroup is generated by srk.

Theorem 8. Solving the Hidden Subgroup problem on DN can be reduced to detecting a
hidden order 2 subgroup srk, or detecting that no such subgroup is hidden.

6

Proof. If the hidden subgroup, call it H, is not one of the ”flip” subgroups, then it must
have a cyclic part. That is, it itself must have a cyclic subgroup, H∩ZN . This subgroup can
be efficiently detected - it is normal in the dihedral group. Suppose we then determine that
H ∩ ZN ' Zk. We then do the following: Compute the factor group DN/Zk ' DN/k. Then
the subgroup of DN/k which will be hidden by the function is just H/Zk, which has no cyclic
subgroup. As such, it can only be a flip or the trivial subgroup. Then we have reduced the
problem to detecting either the specific flip that was done or the trivial subgroup on this
smaller group.

The standard procedure for solving HSP, used in Shor’s algorithm for ZN , Simon’s algo-
rithm mod p (from our homework) over Zp × Zp, and others, is to obtain a superposition
over all possible states, then apply function unitary and apply the inverse of the unitary
that gave us the superposition of all states. This procedure is no different for Kuperberg’s
method for solving HSP on the dihedral group. We represent the element

sbra ∈ DN : |a〉 |b〉 ,with b ∈ {0, 1}, a ∈ ZN .

Then a will take n = dlog(N)e qubits to represent, and b will take 1. We also want to be able
to store output, so we represent output in another n qubits, so we start with |0n〉 |0〉 |0n〉.
The circuit we apply is

|0n〉 FN

Uf

FN

|0〉 H

|0n〉
where our unitary Uf takes |a〉 |b〉 |c〉 → |a〉 |b〉 |c+ f(a, b)〉. We also have FN is the quantum
Fourier transform for ZN . After applying the quantum circuit, we measure the function
output.

Theorem 9. After the first measurement, we have a quantum state of the form 1√
2
(|x, 0〉+

|(x+ d)mod M, 1〉), where the function hides the subgroup H, generated by a flip srd.

Proof. After the Quantum Fourier Transform and Hadamard, we are in state

1√
2N

∑
g∈DN

|g〉 |0〉 ,

i.e. a uniform superposition of all group members. We then apply the unitary to get

1√
2N

∑
g∈DN

|g〉 |f(g)〉 .

Now, measuring the last state will collapse to only states with the measured f(g). That
is, the group qubits will be in states g with fixed f(g). They will form a coset of H.
Because we assumed that H consists of {s0r0, srd}, the group qubits will be in the state
1√
2
(|x, 0〉+ |(x+ d)mod M, 1〉).

7

Theorem 10. At the end of the quantum circuit, we have some state 1√
2
(|0〉+ωdy |1〉), where

ω = e2πi/N , and y ∈ ZN .

Proof. From the state 1√
2
(|x, 0〉+|(x+ d)mod M, 1〉), applying a Quantum Fourier Transform

will provide an even distribution over each value in ZN , given by:

1√
2N

∑
y∈ZN

(ωxy |y, 0〉+ ω(x+d)y |y, 1〉).

Then we can measure the n qubit register, which will collapse it to some value y, and the
remaining flip qubit will be in the state 1√

2
ωxy(|0〉+ ωdy |1〉).

If it was easy to construct a matrix with this as an eigenvector, we could just run phase
estimation. Unfortunately, it appears that this would require knowledge of d, which is the
exact quantity to be identified. Unfortunately, we don’t have this, so we tensor two of these
qubits:

1

2
(|0〉+ ωdy1 |1〉)(|0〉+ ωdy2 |1〉),

and measure the parity of this qubit, hoping to get the odd case:

1

2
(ωdy1 |10〉+ ωdy2 |01〉)→ 1

2
ωdy1(|10〉+ ωdy2−dy1 |01〉).

This can be treated as a qubit just of the form

1√
2

(|0〉+ ωdy2−dy1 |1〉),

so there is a way constructing combinations of these samples with phases on the 1 state that
are not uniformly random. This construction can be used to, in 2O(

√
logN) time, create the

state
1√
2

(|0〉+ ωd2
N |1〉),

which is just |+〉 if d is even, and |−〉 if d is odd. We measure in the Hadamard basis and
receive the least significant bit of d. Then this process can be iterated on smaller groups
DN/2 until d is expressed completely. This will take about log(N) iterations.

4.2 Shortest Vector Problem

To discuss how the Dihedral HSP can be used to solve the shortest vector problem, we
introduce some terms.

Definition 11. A lattice is a discrete subgroup of Rn. It can also be considered to be all
integer linear combinations of a set of basis vectors.

8

Definition 12. The shortest vector problem is the problem to, given a lattice, find the
shortest nonzero vector in the lattice. In this section, we will call the length of this vector
λ1, and the shortest vector w.

However, the actual problem that will be solved by the quantum algorithm is not the
SVP. It is a variant:

Definition 13. The f(n)−unique SVP is the problem to, given a lattice, find the shortest
nonzero vector in it. The lattice is guaranteed to have that only multiples of the shortest
vector have length shorter than the f(n)λ1.

This weaker problem is not arbitrary - it is the type of condition that is commonly sug-
gested for quantum-resistant post-quantum cryptographic protocols.

The way that the Dihedral HSP is used to solve this problem uses what is called the
two-point problem. Consider Rn partitioned into cubes, such that there are only two lattice
vectors in each cube. The cubes should be small enough that the only two vectors are sep-
arated by the shortest vector w. This is where the weakened problem is relevant - it allows
for a wider range of cube widths. We also may consider a subset of the lattice vectors, to
ensure we have only 2 lattice vectors in the cube. Now, the quantum algorithm is to produce
this lattice subset partitioned into cubes, then to measure and collapse the state to one such
cube. It then can find the shortest vector. For the precise specifications, see [3].

Theorem 14. Suppose we have a procedure to produce superpositions of vectors of the form
1√
2
(|0, a〉 + |1, a′〉), where a, a′ are lattice vectors separated by the shortest vector w. The

lattice vectors are of the form {0, 1, · · ·M − 1}n for some M,n. We can produce the shortest
vector by reducing the two point problem to the Dihedral HSP using this procedure.

Proof. The general procedure will be to convert the lattice vectors into integers that can be
examined as an instance of the Dihedral HSP. We will do this with a function f : ZnM →
Z(2M)n :

f([a1, a2, · · · , an]T) =
n∑
i=1

(2M)i−1ai.

This function is one-to-one, so consider it as a unitary, which we apply to the superpositions
1√
2
(|0, a〉+ |1, a′〉) to get

1√
2

(|0, a〉+ |1, a′〉)→ 1√
2

(|0, f(a)〉+ |1, f(a′)〉).

If we apply this to each of the quantum registers, the difference f(a′)− f(a) is a fixed value,
because it represents the shortest vector in each case, and the function is one-to-one. Then
this is a well defined value to give as an input to Kuperberg’s Dihedral HSP algorithm, on
D(2M)n . Then we can achieve the output f(a′) − f(a) using a sufficient amount of these

9

samples.
Then our goal now is to take f(a′)− f(a) and output a′ − a. Our output is of the form

n∑
i=1

(2M)i−1bi : bi = a′i − ai ∈ {−M,−M + 1, · · ·M − 1}.

In order to extract the bi values we compute

n∑
i=1

(2M)i−1bi +
n∑
i=1

M(2M)i−1 =
n∑
i=1

(2M)i−1(bi +M),

from which it is straightforward to compute the bi + M ∈ Z2M, and from there we can
compute each bi = a′i − ai. The vector b = [b1, b2, · · · , bn]T is the shortest vector, the
solution to the two point problem.

Recall that the Dihedral HSP on DN can be solved in 2O(
√

log(N)) time using Kuperberg’s

algorithm. Then on D(2M)n , the time is 2O(
√

log((2M)n)) = 2O(
√
n log(2M)), which seems to be

roughly 2O(
√
x) with x as the size of the input. However, there is a quadratic increase in

the Regev algorithm for SVP that causes this to actually be a 2O(n) algorithm, equivalent in
runtime to the best known classical algorithms.

10

References

[1] Kirsten Eisenträger, Sean Hallgren, Alexei Kitaev, and Fang Song. A quantum algorithm
for computing the unit group of an arbitrary degree number field. 2014 ACM Symposium
on Theory of Computing, 2014.

[2] Oded Regev. A Subexponential Time Algorithm for the Dihedral Hidden Subgroup Prob-
lem with Polynomial Space. arXiv:quant-ph/0406151, 2004.

[3] Oded Regev. Quantum Computation and Lattice Problems. arXiv:cs/0304005, 2003.

[4] Mark Ettinger, Peter Hoyer, and Emanuel Knill. The quantum query complexity of the
hidden subgroup problem is polynomial. arXiv:quant-ph/0401083, 2004.

[5] Mark Ettinger, Peter Hoyer. On Quantum Algorithms for Noncommutative Hidden Sub-
groups. arXiv:quant-ph/9807029, 1998.

[6] Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden sub-
group problem. SIAM Journal on Computing, 2005.

[7] Frédéric Wang. The Hidden Subgroup Problem. arXiv:1008.0010, 2010.

11

