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Abstract. Clustering is a common problem in the analysis of large data
sets. Streaming algorithms, which make a single pass over the data set
using small working memory and produce a clustering comparable in cost
to the optimal offline solution, are especially useful. We develop the first
streaming algorithms achieving a constant-factor approximation to the
cluster radius for two variations of the k-center clustering problem. We
give a streaming (4+ε)-approximation algorithm using O(ε−1kz) memory
for the problem with outliers, in which the clustering is allowed to drop
up to z of the input points; previous work used a random sampling
approach which yields only a bicriteria approximation. We also give a
streaming (6 + ε)-approximation algorithm using O(ε−1 ln(ε−1)k + k2)
memory for a variation motivated by anonymity considerations in which
each cluster must contain at least a certain number of input points.
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1 Introduction

Clustering is a common problem arising in the analysis of large data sets. For
many applications in document and image classification [3, 9, 13, 15, 16] and data
mining, clustering plays a central role [5]. In a typical clustering problem, we have
a set of n input points from an arbitrary metric space (with a distance function
satisfying the triangle inequality) and wish to partition the points into k clusters.
We select a center point for each cluster and consider the distance from each
point to the center of the cluster to which it belongs. In the k-center problem,
we wish to minimize the maximum of these distances, while in the k-median
problem, we wish to minimize their sum. In this paper we focus on k-center
clustering, since it is an important problem for which a variety of approaches
have been presented. Hochbaum and Shmoys [14] and Gonzalez [10] developed
algorithms that achieve a factor 2 approximation in the cluster radius. This is
the best possible since one can show by a reduction from the dominating set
problem that it is NP -hard to approximate k-center with factor 2 − ε for any
ε > 0.
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In the analysis of extremely large data sets, it is not possible to hold the
entire input in memory at once. Thus, we consider the streaming or incremental
model in which the algorithm reads input points one by one and maintains a valid
clustering of the input seen so far using a small amount of working memory. (We
contrast such algorithms with offline algorithms that use memory polynomial in
the size of the input.)

Charikar, Chekuri, Feder and Motwani [5] introduced the incremental model
for the k-center problem and gave a very elegant “Doubling Algorithm” that
achieves a factor 8 approximation using only O(k) memory. The result is slightly
surprising, since it is not obvious at all how to do this incrementally. The key
idea is to maintain a lower bound on the radius of an optimal solution. For
example, after k + 1 input points have been presented, examining the closest
pair of points gives us an obvious lower bound on the optimal radius, since at
least two of these points must belong to the same cluster.

The key focus of this paper is to deal with outliers, an issue originally raised
in [7]. Data is often noisy and a very small number of outliers can dramatically
affect the quality of the solution if not taken into account, especially under the k-
center objective function, which is extremely sensitive to the existence of points
far from cluster centers. The formal definition of the problem is as follows: group
all but z points into k clusters, minimizing the radius of the largest cluster. An
offline factor 3 approximation for the outlier version was developed [7]; it greedily
chooses clusters of a certain radius so as to cover as many new input points with
each cluster as possible. The factor 3 assumes that we can enumerate all center
points in the metric space that the optimal clustering is allowed to use. If not, the
algorithm is easily modified to produce a clustering that uses only input points
as centers but has radius at most 4 times that of an optimal clustering with
unrestricted centers.1 The same paper also considered the k-median objective
function and developed a bicriteria algorithm: if there exists a solution of cost
C that drops z outliers, it finds one of cost at most O(C) that drops at most
O(z) outliers. More recently, a polynomial time algorithm has been developed
for k-medians that delivers a solution of cost O(C) while dropping only z outliers
[8].

The offline algorithm for k-center clustering with outliers is not easily adapted
to the streaming model because it relies on the ability to count the input points
that would be covered by a potential cluster, which is difficult to implement
without having the entire data set in memory. In general, dealing with outliers
in the streaming model is quite tricky because we have no way to know, as
points arrive, which should be clustered and which are outliers. This problem
was first considered by Charikar, O’Callaghan and Panigrahy [6], who developed
a streaming-model bicriteria approximation for the k-center problem (see also
[12]). Their approach is based on taking a random sample of the data set that
is small enough to fit in memory and running the offline algorithm [7] on the
sample. They then prove that, with high probability, the set of clusters found
for the sample is also a good solution for the entire data set. This construction

1 We simply expand the disks Gi to radius 2r and the disks Ei to radius 4r.



preserves the radius approximation factor of the underlying offline algorithm (3
or 4) but increases the number of outliers to (1+ε)2z. The sample has size roughly
O(ε−2kn/z), where n is the data set size. Therefore, the sampling approach is
good when z is linear in n and a slight increase in the number of outliers is
acceptable; otherwise, it requires an unreasonable amount of memory.

We present a streaming algorithm for k-center clustering with outliers that
is in several ways complementary to that of [6]. Our deterministic algorithm
is based on the Doubling Algorithm [5] and also uses the offline algorithm for
outliers [7] as a subroutine. It increases the radius approximation factor to 3 + ε
or 4+ε but meets the outlier bound z exactly; as far as we are aware, it is the first
streaming constant-factor approximation with the latter property. Our algorithm
uses O(ε−1kz) memory, so it is suitable when z is small and an additional slight
increase in the cluster radius is acceptable.

Bădoiu et al. [4] present a sampling-based algorithm for k-center clustering
with outliers that uses coresets, and Agarwal et al. [1] present an algorithm
for shape-fitting with outliers that may be applicable to k-center clustering.
However, both techniques work only in Euclidean spaces Rd; furthermore, the
first has running time exponential in k and the second requires multiple passes
over the input.

Other recent applications of k-center clustering (with and without outliers)
for the purposes of anonymity are considered in [2], but the algorithms given
there do not work in the streaming model. We present a streaming (6 + ε)-
approximation algorithm for the k-center clustering problem with a lower bound
b on the number of points per cluster. The precise requirement is that it must be
possible to allocate each input point to a center within the appropriate radius
so that each center gets at least b points, i.e., centers cannot meet the bound by
sharing points.

2 Improving Streaming Algorithms by Parallelization

In this section, we develop a parallelization construction that improves the ap-
proximation factor of the Doubling Algorithm to 2 + ε while increasing the run-
ning time and memory usage by a factor of O(ε−1 ln(ε−1)).2 We first generalize
the Doubling Algorithm to a “Scaling Algorithm” based on a parameter α > 1
that maintains a lower bound r on the radius of the optimal cluster and raises
it by a factor of exactly α at a time. As it reads points, this algorithm keeps
centers separated by at least 2αr and ensures that every input point seen so far
is within ηr =

(
2α2/(α − 1)

)
r of a center. Let r∗ denote the optimal radius,

and let r0 be half the least distance between two of the first k + 1 distinct input
points, which is used to initialize r.

Naively, the Scaling Algorithm is an η-approximation because it gives us a
solution with radius within a factor η of its own lower bound r, and we minimize
2 Sudipto Guha independently discovered a similar construction [11] based on Gonza-

lez’s algorithm [10]; it also yields a streaming (2 + ε)-approximation algorithm for
k-center clustering.



η = 8 by choosing α = 2. But observe that if r∗ = 1.9r0, we get lucky: the
algorithm cannot raise r to 2r0 because 2r0 is not a lower bound on r∗, so it is
obliged to return a solution with radius at most 8r0, which is only a factor of
about 4.2 from optimal.

To ensure that we always get lucky in this way, we run m instances of the
Scaling Algorithm in parallel (feeding each input point to each instance) with
interleaved sequences of r values. Specifically, we initialize the r value of the
ith instance (i = 1, . . . , m) to α(i/m)−1r0 so that the instance takes on the
r values αt+(i/m)−1r0, where t = 0, 1, . . . . Consequently, any desired r of the
form α(j/m)−1r0 for a positive integer j will eventually be taken on by some
instance. Letting j be the smallest integer greater than m logα(r∗/r0), we have
αj/mr0 > r∗, so the instance that takes r = α(j/m)−1r0 will be unable to raise
r again and thus will return a solution whose radius R is at most ηα(j/m)−1r0.
And by our choice of j, α(j−1)/mr0 ≤ r∗, so R ≤ ηα(1/m)−1r∗. Therefore, by
taking the best solution produced by any of the m instances, we achieve a factor
(η/α)m

√
α approximation.

Substituting the expression for η, the approximation factor of the parallelized
algorithm becomes 2

(
1+1/(α−1)

)
m
√

α. Now, we want α large to make 1/(α−1)
small; intuitively, with larger α, accounting for previous rounds across an increase
of r costs less in the Scaling Algorithm’s approximation factor. We also want
m large to keep m

√
α close to 1. Letting α = O(ε−1) and m = O(ε−1 ln(ε−1))

gives a factor of 2 + ε. This approximation factor is essentially the best we can
hope for since the best offline algorithms [14, 10] are 2-approximations, but there
may be a better construction that uses less time and memory. We will apply the
same parallelization construction to the streaming-model clustering algorithms
described in the following sections.

2.1 Suitability of Parallelized Algorithms

The original model of Charikar et al. [5] requires that a clustering algorithm
maintain a single clustering of the input points read so far and modify it only
by merging clusters. This model has the advantage that a forest describing the
merges can be incrementally written to secondary storage; the forest can later
be traversed to enumerate the input points in any desired output cluster without
a second pass over the entire input. Parallelized algorithms do not fit this model
because they maintain many clusterings and do not choose one until the end.
(This is why they do not contradict the lower bound of 1+

√
2 on the approxima-

tion factor in [5].) Writing out a forest for each of the many partial clusterings
under consideration may be impractical. However, parallelized algorithms are
still useful when the goal is only to produce statistics for each output cluster
(along with the centers themselves) because the statistics can be maintained
independently for each partial clustering.



3 Clustering with Outliers

In this section, we develop a streaming algorithm for k-center clustering with z
outliers that achieves a constant factor approximation to the cluster radius using
O(kz) memory. We then parallelize it to a (4+ε)-approximation using O(ε−1kz)
memory. The essential difficulty in designing a deterministic streaming algorithm
for clustering with outliers is that it is dangerous to designate an input point
as a cluster center and start forgetting nearby points because they could all be
outliers and the center might be needed to cover points elsewhere. Our algorithm
overcomes the difficulty by delaying the decision as long as necessary. Specifically,
it accumulates input points (remembering all of them) until it sees z + 1 points
close together. These cannot all be outliers, so it creates a cluster for them and
only then can safely forget any later points that fall in that cluster.

The algorithm’s state consists of:

– some number ` ≤ k of stored cluster centers, each of which carries a list of
z + 1 nearby “support points” from which it was originally formed;

– some “free points” that do not fall into existing clusters but cannot yet be
made into new clusters because they might be outliers; and

– a lower bound r on the optimal radius, as in the Doubling Algorithm.

The algorithm ensures that clusters of radius ηr at the ` stored centers cover all
forgotten points, and it checks after processing each input point that it can cover
all but at most z of the free points with k − ` additional clusters of radius ηr.
Thus, whenever the algorithm encounters the end of the input, it can produce
a solution with radius ηr. The algorithm is based on parameters α, β, and η,
which we will choose later to optimize the approximation factor; for the proof
of correctness to hold, these parameters must satisfy some constraints that we
will state as they arise.

The algorithm is designed so that, whenever its partial solution with radius
ηr becomes invalid, it can establish a new lower bound αr on the optimal radius,
raise r by a factor of α, and adapt the partial solution to the new value of r;
this process is repeated until the validity of the partial solution is restored.
Furthermore, we will show that the algorithm will never store more than O(kz)
free points at a time, establishing the memory requirement.

As in the Doubling Algorithm [5], we need a certain separation between
centers in order to raise r. To this end, we say that two distinct centers conflict
if some support point of the first is within distance 2αr of some support point
of the second.

Algorithm 3.1 (Clustering with outliers). Peek at the first k+z+1 distinct
input points, initialize r to half the least distance between any two of those
points, and start with no cluster centers and no free points. Then read the input
points in batches. Batches of size kz appear to give the best trade-off between
running time and memory usage, but a different size can be used if desired.
For each batch, add the points as free points and then perform the following
procedure:



1. Drop any free points that are within distance ηr of cluster centers.
2. If some free point p has at least z+1 free points within distance βr (including

itself), then add p as a cluster center, choosing any z + 1 of the free points
within distance βr as its support points, and repeat from step 1. If no such
p exists, proceed to the next step.

3. Let ` be the number of stored cluster centers. Check that ` ≤ k and that
at most (k − `)z + z free points are stored. Run the 4-approximation offline
algorithm for k-center clustering with outliers (see the Introduction) to at-
tempt to cover all but at most z of the free points using k − ` clusters of
radius ηr. If the checks and the offline algorithm both succeed, processing of
the current input batch is complete. Otherwise, set r ← αr and continue to
the next step.

4. Unmark all the stored centers and then process them as follows: while there
exists an unmarked center c, mark c and drop any other centers that conflict
with c with respect to the new value of r. When a center is dropped, its
support points are forgotten. (Note that once a center c is marked, it cannot
later be dropped on account of another center c′ because c′ would already
have been dropped on account of c.) Repeat from step 1.

When the end of the input is reached, return clusters of radius ηr at the stored
centers plus the clusters found by the last run of the offline algorithm. ut

Figure 1 shows an intermediate state of the algorithm on a data set with
k = 3 and z = 4. The algorithm is storing ` = 2 cluster centers c1 and c2, and
each center has z + 1 = 5 support points (including itself), which are within
βr of it. Several other input points within distance ηr of the centers have been
forgotten. The algorithm is also storing seven free points, including f1, which
would be converted to a cluster center if there were just one more free point
inside circle ω; but as it stands, the algorithm cannot rule out the possibility
that all four of the points in ω are outliers. The offline algorithm found the
cluster Γ (centered at f1), which covers all but 2 ≤ z of the free points; if we
combine it with the stored centers, we have a valid clustering of radius ηr for
the input points seen so far.

Notice that the three support points A are just far enough from the support
points B to avoid a conflict. If they were any closer, then the optimal solution
could conceivably cover all six points with a single cluster of radius αr and leave
the remaining four support points as outliers, and the proof of correctness of the
algorithm’s decision to set r ← αr (see Lemma 3.2(e) below) would fail.

Suppose several free points arrive inside Γ but outside ω. The current clus-
tering covers these points, but if the algorithm allowed them to accumulate
indefinitely, it would violate the O(kz) memory bound. Thus, when the number
of free points exceeds (k − `)z + z = 8, the algorithm raises r on the following
logic: in the optimal solution, two clusters are busy covering support points of
the stored centers, and there is no way a third cluster of radius αr containing
at most z = 4 points can cover all the free points with at most 4 outliers. (If
there were a potential third cluster of more than 4 points, the algorithm would
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already have recognized it in step 2.) Once r is raised, the support points A and
B conflict, so one of the centers c1, c2 subsumes the other in step 4.

Lemma 3.2. The algorithm maintains the following invariants:

(a) Every time step 1 completes, the remaining free points are at least distance
ηr from cluster centers.

(b) Each stored center has z + 1 support points within distance βr of it.
(c) No two stored cluster centers conflict.
(d) Every input point the algorithm has read so far either is a free point or is

covered by a cluster of radius ηr at a stored center.
(e) The optimal clustering for the input points the algorithm has read so far

requires a radius of at least r.

Proof. (a) is obvious. (b) is checked when a center is added and remains true
when r increases.

To prove (c), we place the constraint η ≥ 2α + β on our later choice of the
parameters. With this constraint, addition of a center c in step 2 preserves the
invariant. For if s1 is a support point of an existing center c1, then s1 is within
βr of c1, which is at least ηr from c’s support points (since they were previously
free points). By the triangle inequality, s1 is at least distance ηr − βr ≥ 2αr
from c’s support points, so no conflict results. Furthermore, temporary conflicts
created by an increase in r are removed in step 4.

Each point the algorithm reads is initially a free point, so the algorithm
endangers invariant (d) only when it drops free points or centers. Free points
dropped in step 1 are covered by stored centers, so they do not break the invari-
ant. Steps 3 and 4 effectively drop some clusters while expanding the remaining
ones to radius ηαr; we must show that any input point that was covered by a
dropped cluster before the change is covered by an expanded cluster afterwards.
To this end, we constrain η + 2α2 + 2β ≤ ηα. Let r0 and r1 = αr0 denote the
old and new values of r, respectively. Consider an input point p that was cov-
ered by a dropped center c, meaning that it was within distance ηr0 of c. c was
dropped when a conflicting center c′ was marked. The support points causing
the conflict were within distance 2αr1 of each other and distance βr0 of their
respective centers, so the distance from p to c′ is at most

ηr0 + βr0 + 2αr1 + βr0 = (η + 2α2 + 2β)r0 ≤ ηαr0 = ηr1.

Thus, p is covered by c′, and the invariant holds.
Invariant (e) is established by the initial setting of r because one of the k

clusters of the optimal solution must cover two of the first k + z + 1 distinct
input points. To show that increases in r maintain the invariant, we will show
that, if step 3 is reached and the optimal clustering C∗ for the input read so far
has radius less than αr, then the algorithm does not set r ← αr.

Let c be a stored cluster center. C∗ cannot designate all z + 1 of c’s support
points as outliers, so some cluster c∗ ∈ C∗ must cover one of c’s support points;
we say that c∗ bites c. No two stored cluster centers conflict, so no cluster of C∗



(having diameter less than 2αr) can bite two of them; thus, each stored cluster
center is bitten by a different cluster of C∗. In particular, this means ` ≤ k.
Similarly, by invariant (a) and our assumption that η ≥ 2α+β, no cluster of C∗

can both bite a stored cluster center and cover a free point. Finally, we constrain
β ≥ 2α; then no cluster of C∗ can cover z + 1 or more free points because, if it
did, each of those free points would be within distance βr of all the others and
they would have become the support points of a cluster center in step 2.

Now, at least ` of the clusters of C∗ are devoted to biting stored cluster
centers, so at most k− ` clusters can cover free points; let F ∗ be the set of these
clusters. In order for C∗ to be a valid solution for the input read so far, F ∗ must
be a valid clustering of all but at most z of the free points. But we showed that
each of the at most k − ` clusters in F ∗ covers at most z free points, so there
can be at most (k − `)z + z free points in total. Finally, the offline algorithm is
a 4-approximation, so if we assume that η ≥ 4α, the existence of F ∗ with radius
less than αr guarantees that the offline algorithm will find a clustering of radius
ηr. The result is that r is not raised, as desired. ut

Theorem 3.3. The algorithm produces a valid clustering of radius ηr using
O(kz) memory and O(kzn+(kz)2 log P ) time, where P is the ratio of the optimal
radius to the shortest distance between any two distinct input points.

Proof. Validity of the clustering: The first set of ` clusters covers all input points
except the free points by Lemma 3.2(d), and the second set of k−` clusters covers
all but at most z of the free points. Thus, together, the k clusters cover all but
at most z of the input points.

Memory usage: At any time, the algorithm remembers `(z+1) support points
(including the centers), at most (k − `)z + z free points from before the current
batch, and at most kz free points from the current batch. This is a total of at
most (2k + 1)(z + 1) points, and the working storage needed to carry out the
steps is constant per point.

Running time: At the beginning of a batch, we perform step 1 exhaustively
in O(k2z) time. We identify potential centers in step 2 by maintaining a count
for each free point p of the free points within distance βr of p. Each time we add
or drop a free point, which happens at most O(kz) times per batch, we perform
a scan of the other free points to update their counts (this takes O(kz) time).
When we convert a free point c to a center, we identify its support points and
the free points to be dropped in step 1 on the same scan that drops c itself as
a free point. The offline algorithm in step 3 runs in O((kz)2) time using its own
set of distance-ηr/2 counts; we charge a successful run of the offline algorithm,
which ends a batch, to that batch and a failed run to the resulting increase in
r. In step 4, we have O(k) centers (k from the previous batch and at most one
per z + 1 of the O(kz) free points), so we test each of the O(k2) pairs of centers
for a conflict in O(z2) time; this takes O((kz)2) time, which we charge to the
increase in r. Now, there are O(n/kz) batches and O(log P ) increases in r, and
each batch or increase is charged O((kz)2) time, giving the desired bound. ut



The construction in Section 2 yields an m-instance parallelized algorithm
with approximation factor (η/α)m

√
α. We wish to choose the parameters to min-

imize this factor. We have the constraints:

η ≥ 2α + β (1)
ηα ≥ η + 2α2 + 2β (2)
β ≥ 2α (3)
η ≥ 4α (4)

Setting α = 4, β = 8, and η = 16 satisfies the constraints and gives an ap-
proximation factor of 41+(1/m), so we can achieve a (4 + ε)-approximation with
m = O(ε−1). The memory usage and running time of the parallelized algorithm
increase by a factor of m to O(ε−1kz) and O(ε−1(kzn + (kz)2 log P )). Note that
two things limit the approximation performance: that of the offline algorithm
via (4), and the constraints (3) and (1) that limit what an optimal cluster can
do. Thus, an improvement in the approximation factor of the offline algorithm
will not carry through to the streaming algorithm unless it comes with a corre-
spondingly better way to analyze optimal clusters.

3.1 Improvement Using a Center-Finding Oracle

There is a (3+ε)-approximation version of the streaming algorithm, correspond-
ing to the 3-approximation offline algorithm, when the metric space comes with
a center-finding oracle. Given a positive integer j, a distance x, and a point set
S, the oracle returns a point p having at least j points of S within distance x
or announces that no such p exists in the metric space. Such an oracle may be
impractical to implement in high-dimensional spaces, but when one is available,
we can use it to improve the algorithm.

In step 2, instead of looking for potential centers among the free points, we
invoke the oracle with x = βr, j = z + 1, and S being the current set of free
points, and we add the resulting point (if any) as a center. Now, when the oracle
fails, we know there is no cluster of radius βr centered anywhere that covers
more than z free points, so we can relax constraint (3) to β ≥ α. In step 3,
we substitute the 3-approximation offline algorithm, choosing centers using the
oracle, and hence relax constraint (4) to η ≥ 3α. With the modified constraints,
we choose α = β = 5 and η = 15 to achieve a (3 + ε)-approximation with the
same O(ε−1kz) memory usage; the running time depends on that of the oracle.

4 Clustering with Anonymity

For the problem of k-center clustering with a lower bound b on the number of
points per cluster, we present a construction based on the parallelized Scaling
Algorithm of Section 2 that achieves a (6 + ε)-approximation. Applications of
this problem for anonymity are considered by Aggarwal et al. [2].



Algorithm 4.1 (Clustering with anonymity). Let δ = ε/2. First run the
m-instance parallelized Scaling Algorithm with m chosen to achieve a (2 + δ)-
approximation, but modify it to keep a count of how many input points “belong”
to each center under an assignment of each point to a center within distance
(2 + δ)r of it. (The algorithm does not store this assignment explicitly, but we
use it in the proof of correctness.) When an existing center catches a new input
point, the center’s count is incremented, and when centers are merged, their
counts are added. The Scaling Algorithm returns a lower bound r on the radius
of the optimal k-center clustering of the input, a list of k preliminary centers c1,
. . . , ck, and the number ni of input points belonging to each preliminary center
ci.

If ni ≥ b for all i, the preliminary centers ci constitute a solution within
factor 2 + δ of the optimal and we are done. Otherwise, we merge some cen-
ters using a scheme resembling the offline algorithm for k-center clustering with
anonymity [2]. Given a merging radius R, the scheme works as follows. Initialize
all preliminary centers to inactive; then, while there exists a preliminary center
c that has no active center within distance 2R, activate c. Next, attempt to
allocate each input point p (belonging to a preliminary center c) to an active
center within distance 2R + (2 + δ)r of c in such a way that each active center
gets at least b input points. To do this, construct a bipartite graph on the sets P
of preliminary centers and A of currently active centers with an edge of infinite
capacity connecting a node x ∈ P to a node y ∈ A if their distance is at most
2R + (2 + δ)r. Add a source s with an edge of capacity ni to each ci ∈ P and a
sink t with an edge of capacity b from each ci ∈ A, and compute a max flow from
s to t. If this flow saturates all edges entering t, it represents a valid allocation
of the input points, which the merging scheme returns.

We attempt the merging scheme for various values of R in a binary search
(which need only consider values of the form d/2 and (d− (2 + δ)r)/2 for inter-
center distances d) and keep the successful allocation with the smallest value of
R. The algorithm returns a clustering consisting of the active centers under this
allocation with radius (4 + 2δ)r + 2R. ut

Theorem 4.2. The algorithm produces a clustering with at least b points per
cluster whose radius is at most 6 + ε = 6 + 2δ times that of the optimal such
clustering.

Proof. Every input point p belongs to a preliminary center c within distance
(2+ δ)r of it and is allocated to an active center c′ within distance 2R+(2+ δ)r
of c, so p is within distance (4 + 2δ)r + 2R of c′. The algorithm’s clustering
consists of the active centers, so the clustering covers every input point at radius
(4 + 2δ)r + 2R by virtue of the active center to which the point is allocated.
Furthermore, each active center is allocated b points within distance (4+2δ)r+2R
of it. Therefore, the algorithm’s clustering is valid. We must show that it is a
(6 + 2δ)-approximation.

Let r∗ be the radius of the optimal clustering, and consider an execution of
the merging scheme with R ≥ r∗. Active centers are separated by more than



2R ≥ 2r∗ by construction, so each lies in a different optimal cluster. We now
claim that there exists an allocation of the form sought by the merging scheme,
namely the allocation A that gives each input point to the unique active center (if
any) lying in its optimal cluster. Let p be an input point; since optimal clusters
have diameter 2r∗, A gives p to an active center c within distance 2r∗ of it. At the
end of the Scaling Algorithm, p belonged to a center c′ within distance (2 + δ)r,
so the distance between c and c′ is at most 2r∗ +(2+ δ)r ≤ 2R+(2+ δ)r. Thus,
the merging scheme could legally allocate p (as counted by c′) to c. This is true
of every input point p, so the claim is established. Consequently, the merging
scheme must succeed whenever R ≥ r∗.

Thus, when the algorithm takes the smallest R for which the merging scheme
succeeds, it will take an R ≤ r∗. (The algorithm might consider not r∗ itself but
a slightly smaller value of R for which the merging scheme makes all the same
decisions and therefore still must succeed.) The Scaling Algorithm ensures that
r is a lower bound on r∗, i.e., r ≤ r∗. Combining these two inequalities, the
radius (4 + 2δ)r + 2R of the algorithm’s clustering is at most 6 + 2δ times the
optimal radius r∗, as desired. ut

Theorem 4.3. The algorithm runs in O(m(kn+k2 log P )+k3 log k) time using
O(mk+k2) memory, where m = O(ε−1 ln(ε−1)) and P is the ratio of the optimal
radius to the shortest distance between any two distinct input points.

Proof. We use the simple O(k)-memory implementation of the Scaling Algorithm
that stores only the centers; it performs each of the O(log P ) scalings in O(k2)
time and otherwise processes each point in O(k) time for a total running time
of O(kn + k2 log P ). Parallelization multiplies these bounds by m. The running
time of the second phase is dominated by the max flow computation, which
is done O(log k) times because there are O(k2) possible values for R. Using the
relabel-to-front algorithm, each max flow invocation takes O(k3) time and O(k2)
memory. The desired bounds follow. ut

The example in Figure 2 should help clarify the argument and motivate the
final radius of (4+2δ)r+2R. We have two preliminary clusters c1 and c2 of radius
(2 + δ)r with n1 = 5 and n2 = 1. The Scaling Algorithm decided to make the
points A belong to c1 even though they are actually much closer to c2, perhaps
because c2 was not created until after they were read. Suppose we activate c2 in
the merging scheme. All we know about it is that it is in some optimal cluster of
diameter 2r∗ that contains b input points. For example, suppose b = 3 and there
is an optimal cluster centered at c∗ (not an input point) that contains c2 and
the points A. In order to guarantee that we can successfully allocate three points
to c2 whenever R ≥ r∗, we must make all input points within distance 2R of c2

(here the points A) available for allocation to it. But these points could belong to
a different center (here c1) that is another (2+δ)r away, so to be sure of catching
them, we must allow c2 to take points belonging to centers up to 2R + (2 + δ)r
away. However, the algorithm knows only that the five points belonging to c1

are within (2 + δ)r of it; it knows nothing else about where they lie. In allowing
c2 to take points from c1 to ensure that it has access to the points A, we are
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Fig. 2. Example of clustering with anonymity, with b = 3.

also opening the possibility of it taking the points B, which are (4 + 2δ)r + 2R
away; there is no obvious way to avoid this. Thus, we set the radius of the final
clustering to (4 + 2δ)r + 2R to make sure the clustering is valid. (For example,
if b = 6, the algorithm might return a clustering consisting of a single cluster
centered at c2 containing all six points, which would need radius (4+2δ)r+2R.)

The best-known offline algorithm [2], which essentially performs the allo-
cation phase without the perturbation caused by the initial Scaling Algorithm
phase, achieves an approximation factor of 2. Whether there is a streaming al-
gorithm with a factor closer to 2 is an open problem.

4.1 Computing Per-Cluster Statistics

Suppose that we wish to compute some statistics about the points allocated to
each cluster as well as the center itself. In most cases, the algorithm can be
extended to compute the statistics without a second pass over the input. For
example, consider a medical application in which each input point represents
a person who may or may not have a certain disease, and suppose we want to
know what percentage of the people in each cluster have the disease. The first
phase already maintains a count of people belonging to each center, and we can
maintain a second count of people with the disease in the same way. When we
allocate the people belonging to a preliminary center in the second phase, we
simply allocate the people with the disease in the same proportion. For example,
suppose 100 people belong to a preliminary center c1 and 11 of them have the
disease; if we allocate 30 of these 100 people to an active center c2, we assume
that 3.3 of them have the disease. In effect, we are allocating to c2 30% of each
individual who belongs to c1. The fractionality of the allocation may appear silly
but does not really harm the statistics.

In the same way, if we want the average height of the people in each cluster,
we can maintain a “total height” value for each center, allocate height values



in proportion to people, and then divide the total height allocated to a cluster
by the number of people allocated to it. We can even compute several statistics
on the same run. In full generality, if each input point comes with a vector of
real-number weights, we can compute a total-weight vector for each cluster and
divide by the number of points if we desire averages.

5 Conclusions

It is probably possible to combine our techniques for clustering with outliers
and with anonymity to obtain an algorithm for the problem with both outliers
and anonymity (albeit with a worse approximation factor), but we have not
investigated this. One obvious open problem is to find an algorithm for the
outlier problem with better running time and memory usage than our approach
or the sampling approach of [6], particularly for the case where neither z nor
n/z is small, or to prove a lower bound on the amount of memory needed.

If we are allowed multiple passes over the input, we can use a scaling-style
algorithm to determine the optimal radius up to a constant factor on the first
pass and then bound it more tightly on each subsequent pass by testing multiple
guesses in parallel. By spreading the work across passes, we achieve the same
approximation factor with a much smaller number of parallel instances. (The
basic Hochbaum-Shmoys method [14] works naturally for guess-checking in the
streaming model, but the offline algorithm for outliers [7] does not; one could
instead use a cut-down guess-checking version of our outlier algorithm.) Devel-
oping a better algorithm that fully exploits multiple passes to achieve the same
approximation factor using even less memory is another open problem.

Acknowledgment: The authors are grateful to Sudipto Guha for useful dis-
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