
Quantiles and Equidepth Histograms over

Streams

Michael B. Greenwald1 and Sanjeev Khanna2

1 Bell Labs, Lucent Technologies, Rm. 2C-424, 600-700 Mountain Avenue P.O.
Box 636, Murray Hill, NJ 07974 greenwald@cis.upenn.edu

2 University of Pennsylvania, Dept. of Computer and Info. Science, 3330 Walnut
Street, Philadelphia, PA 19104 sanjeev@cis.upenn.edu

1 Introduction

A quantile query over a set S of size n, takes as input a quantile φ, 0 < φ ≤ 1,
and returns a value v ∈ S, whose rank in the sorted S is φn. Computing the
median, the 99-percentile, or the quartiles of a set are examples of quantile
queries. Many database optimization problems involve approximate quantile
computations over large data sets. Query optimizers use quantile estimates to
estimate the size of intermediate results and choose an efficient plan among a
set of competing plans. Load balancing in parallel databases can be done by
using quantile estimates. Above all, quantile estimates can give a meaningful
summary of a large data set using a very small memory footprint. For instance,
given any data set, one can create a data structure containing 50 observations,
that can answer any quantile query to within 1% precision in rank.

Based on the underlying application domain, a number of desirable prop-
erties can be identified for quantile computation. In this survey, we will focus
on the following three properties: (a) space used by the algorithm; (b) guar-
anteed accuracy to within a pre-specified precision; and (c) number of passes
made.

It is desirable to compute quantiles using the smallest memory footprint
possible. We can achieve this by dynamically storing, at any point in time,
only a summary of the data seen so far, and not the entire data set. The size
and form of such summaries are determined by our a priori knowledge of the
types of quantile queries we expect to be able to answer. We may know, in
advance, that the client intends to ask for a single, specific, quantile. Such a
single quantile summary, is parameterized in advance by the quantile, φ, and
a desired precision ǫ. For any 0 < φ ≤ 1, and 0 ≤ ǫ ≤ 1, an ǫ-approximate φ-
quantile on a data set of size n, is any value v whose rank, r∗(v), is guaranteed
to lie between n(φ−ǫ) and n(φ+ǫ). For example, a .01-approximate .5-quantile
is any value whose rank is within 1% of the median.

2 Michael B. Greenwald and Sanjeev Khanna

Alternatively, we may know that the client is interested in a range of
equally-spaced quantile queries. In such cases we summarize the data by an
equi-depth histogram. An equi-depth histogram is parameterized by a bucket
size, φ, and a precision, ǫ. The client may request any, or all, φ-quantiles, that
is, elements of ranks, φn, 2φn, ..., n. We say that H(φ, ǫ) is an ǫ-approximate
equi-depth histogram with bucket width φ if for any i = 1 to 1/φ, it returns a
value viφ for the iφ quantile, where n(iφ − ǫ) ≤ r∗(viφ) ≤ n(iφ + ǫ).

Finally, we may have no prior knowledge of the anticipated queries. Such ǫ-
approximate quantile summaries are parameterized only by a desired precision
ǫ. We say that a quantile summary Q(ǫ) is ǫ-approximate if it can be used to
answer any quantile query to within a precision of ǫn. There is a close relation
between equi-depth histograms and quantile summaries. Q(ǫ) can serve as an
equi-depth histogram H(φ, ǫ) for any 0 < φ ≤ 1. Conversely, an equi-depth
histogram H(φ, ǫ) is a φ-approximate quantile summary, provided only that
ǫ ≤ φ/2.

Organization: The rest of this chapter is organized as follows. In Section 2,
we formally introduce the notion of an approximate quantile summary, and
some simple operations that we will use to describe various algorithms for
maintaining quantile summaries. Section 3 describes deterministic algorithms
for exact selection and for computing approximate quantile summaries. These
algorithms give worst-case deterministic guarantees on the accuracy of the
quantile summary. In contrast, Section 4 describes algorithms with proba-
bilistic guarantees on the accuracy of the summary.

2 Preliminaries

We will assume throughout that the data is presented on a read-only tape
where the tape head moves to the right after each unit of time. Each move of
the tape head reveals the next observation (element) in the sequence stored
on the tape. For convenience, we will simply say that a new observation ar-
rives after each unit of time. We will use n to denote both the number of
observations (elements of the data sequence) that have been seen so far as
well as the current time. Almost all results presented here concern algorithms
that make a single pass on the data sequence. In a multi-pass algorithm, we
assume that at the beginning of each pass, the tape head is reset to the left-
most cell on the tape. We assume that our algorithms operate in a RAM
model of computation. The space s(n) used by an algorithm is measured in
terms of the maximum number of words used by an algorithm while process-
ing an input sequence of length n. This model assumes that a single word
can store max{n, |v∗|} where v∗ is the observation with largest absolute value
that appears in the data sequence.

The set-up as described above concerns an “insertion-only” model that
assumes that an observation once presented is not removed at a later time

Quantiles and Equidepth Histograms over Streams 3

from the data sequence. This is referred to as the cash register case in the
literature [8]. A more general setting is the turnstile case [16] that also allows
for deletion of observations. We will consider algorithms for this more general
setting as well. We note here that a simple modification of the model above
can be used to capture the turnstile case: the ith cell on the read-only tape,
contains both the ith element in the data sequence and an additional bit that
indicates whether the element is being inserted or deleted.

An order-statistic query over a data set S takes as input an integer r ∈
[1..|S|] and outputs an element of rank r in S. We say that the order-statistic
query is answered with ǫ-accuracy if the output element is guaranteed to
have rank within r+ǫn. For simplicity, we will assume throughout that ǫn
is an integer. If 1/ǫ is an integer, then this is easily enforced by batching
observations 1/ǫ at a time. If 1/ǫ is not an integer, then let i be an integer
such that 1/2i+1 < ǫ < 1/2i. We can then replace the ǫ-accuracy requirement
by ǫ′ = 1/2i+1 which is within a factor of two of the original requirement.

2.1 Quantile Summary

Following [10], a quantile summary for a set S is an ordered set Q =
{q1, q2, ..., qℓ} along with two functions rminQ and rmaxQ such that

(i) q1 ≤ q2... ≤ qℓ and qi ∈ S for 1 ≤ i ≤ ℓ.
(ii) For 1 ≤ i ≤ ℓ, each qi has rank at least rminQ(qi), and at most rmaxQ(qi)

in S.
(iii)Finally, q1 and qℓ are the smallest and the largest elements, respectively,

in the set S, that is, rminQ(q1) = rmaxQ(q1) = 1, and rminQ(qℓ) =
rmaxQ(qℓ) = |S|.

We will say that Q is a relaxed quantile summary if satisfies properties (i)
and (ii) above, and the following relaxation of property (iii): rmaxQ(q1) ≤ ǫ|S|
and rminQ(qℓ) ≥ (1 − ǫ)|S|.

We say that a summary Q is an ǫ-approximate quantile summary for a set
S if it can be used to answer any order statistic query over S with ǫ-accuracy.
That is, it can be used to compute the desired order-statistic within a rank
error of at most ǫ|S|. The proposition below describes a sufficient condition
on the function rminQ and rmaxQ to ensure an ǫ-approximate summary.

Proposition 1 ([10]) Let Q be a relaxed quantile summary such that it
satisfies the condition max1≤i<ℓ(rmaxQ(qi+1) − rminQ(qi)) ≤ 2ǫ|S|. Then Q
is an ǫ-approximate summary.

Proof. Let r = ⌈φ|S|⌉. We will identify an index i such that r − ǫ|S| ≤
rminQ(qi) and rmaxQ(qi) ≤ r + ǫ|S|. Clearly, such a value qi approximates
the φ-quantile to within the claimed error bounds. We now argue that such
an index i must always exist.

4 Michael B. Greenwald and Sanjeev Khanna

Let e = maxi(rmaxQ(qi+1) − rminQ(qi))/2. Consider first the case r ≥
|S| − e. We have rminQ(qℓ) ≥ (1 − ǫ)|S|, and therefore i = ℓ has the desired
property. We now focus on the case r < |S| − e, and start by choosing the
smallest index j such that rmaxQ(qj) > r + e. If j = 1, then j is the desired
index since r + e < rmaxQ(q1) ≤ ǫ|S|. Otherwise, j ≥ 2, and it follows that
r−e ≤ rminQ(qj−1). If r−e > rminQ(qj−1) then rmaxQ(qj)−rminQ(qj−1) >
2e; a contradiction since e = maxi(rmaxQ(qi+1)−rminQ(qi))/2. By our choice
of j, we have rmaxQ(qj−1) ≤ r+e. Thus i = j−1 is an index i with the above
described property.

In what follows, whenever we refer to a (relaxed) quantile summary as
ǫ-approximate, we assume that it satisfies the conditions of Proposition 1.

2.2 Operations

We now describe two operations that produce new quantile summaries from
existing summaries, and compute bounds on the precision of the resulting
summaries.
The Combine Operation Let Q′ = {x1, x2, ..., xa} and Q

′′

= {y1, y2, ..., yb}
be two quantile summaries. The operation combine(Q′, Q

′′

) produces a new
quantile summary Q = {z1, z2, ..., za+b} by simply sorting the union of the
elements in two summaries, and defining new rank functions for each element
as follows. W.l.o.g. assume that zi corresponds to some element xr in Q′. Let
ys be the largest element in Q

′′

that is not larger than xr (ys is undefined if
no such element), and let yt be the smallest element in Q

′′

that is not smaller
than xr (yt is undefined if no such element). Then

rminQ(zi) =

{

rminQ′(xr) if ys undefined
rminQ′(xr) + rminQ′′(ys) otherwise

rmaxQ(zi) =

{

rmaxQ′(xr) + rmaxQ′′(ys) if yt undefined
rmaxQ′(xr) + rmaxQ′′(yt) − 1 otherwise

Lemma 1. Let Q′ be an ǫ
′

-approximate quantile summary for a multiset S′,
and let Q

′′

be an ǫ
′′

-approximate quantile summary for a multiset S
′′

. Then
combine(Q′, Q

′′

) produces an ǫ-approximate quantile summary Q for the mul-

tiset S = S′ ∪ S
′′

where ǫ = n′ǫ′+n
′′

ǫ
′′

n′+n′′ ≤ max{ǫ′, ǫ
′′

}. Moreover, the number

of elements in the combined summary is equal to the sum of the number of
elements in Q′ and Q

′′

.

Proof. Let n′ and n
′′

respectively denote the number of observations covered
by Q′ and Q

′′

. Consider any two consecutive elements zi, zi+1 in Q. By Propo-
sition 1, it suffices to show that rmaxQ(zi+1) − rminQ(zi) ≤ 2ǫ(n

′

+ n
′′

). We
analyze two cases. First, zi, zi+1 both come from a single summary, say ele-
ments xr, xr+1 in Q′. Let ys be the largest element in Q

′′

that is smaller than

Quantiles and Equidepth Histograms over Streams 5

xr and let yt be the smallest element in Q
′′

that is larger than xr+1. Observe
that if ys and yt are both defined, then they must be consecutive elements in
Q

′′

.

rmaxQ(zi+1) − rminQ(zi) ≤

[rmaxQ′(xr+1) + rmax
Q

′′ (yt) − 1]

−[rminQ′(xr) + rminQ′′(ys)]

≤ [rmaxQ′(xr+1) − rminQ′(xr)] +

[rmax
Q

′′ (yt) − rminQ′′(ys) − 1]

≤ 2(n
′

ǫ
′

+ n
′′

ǫ
′′

) = 2ǫ(n
′

+ n
′′

).

Otherwise, if only ys is defined, then it must be the largest element in Q
′′

; or
if only yt is defined, it must be the smallest element in Q

′′

. A similar analysis
can be applied for both these cases as well.

Next we consider the case when zi and zi+1 come from different summaries,
say, zi corresponds to xr in Q′ and zi+1 corresponds to yt in Q

′′

. Then observe
that xr is the largest element smaller than yt in Q′ and that yt is the smallest
element larger than xr in Q

′′

. Moreover, xr+1 is the smallest element in Q′

that is larger than yt, and yt−1 is the largest element in Q
′′

that is smaller
than xr. Using these observations, we get

rmaxQ(zi+1) − rminQ(zi) ≤

[rmax
Q

′′ (yt) + rmax
Q

′ (xr+1) − 1]

−[rminQ′(xr) + rmin
Q

′′ (yt−1)]

≤ [rmax
Q

′′ (yt) − rmin
Q

′′ (yt−1)] +

[rmax
Q

′ (xr+1) − rmin
Q

′ (xr) − 1]

≤ 2(n
′

ǫ
′

+ n
′′

ǫ
′′

) = 2ǫ(n
′

+ n
′′

).

Corollary 1 Let Q be a quantile summary produced by repeatedly applying
the combine operation to an initial set of summaries {Q1, Q2, ..., Qq} such
that Qi is an ǫi-approximate summary. Then regardless of the sequence in
which combine operations are applied, the resulting summary Q is guaranteed
to be (maxq

i=1
ǫi)-approximate.

Proof. By induction on q. The base case of q = 2 follows from Lemma 1.
Otherwise, q > 2, and we can partition the set of indices I = {1, 2, ..., q} into
two disjoint sets I1 and I2 such that Q is a result of the combine operation
applied to summary Q′ resulting from a repeated application of combine to
{Qi|i ∈ I1}, and summary Q

′′

results from a repeated application of combine
to {Qi|i ∈ I2}. By induction hypothesis, Q′ is maxi∈I1

ǫi-approximate and
Q

′′

is maxi∈I2
ǫi-approximate. By Lemma 1, then Q must be maxi∈I1∪I2

ǫi =
maxi∈I ǫi-approximate.

6 Michael B. Greenwald and Sanjeev Khanna

The Prune Operation The prune operation takes as input an ǫ′-approximate
quantile summary Q′ and a parameter B, and returns a new summary Q of
size at most B + 1 such that Q is an (ǫ′ + (1/(2B)))-approximate quan-
tile summary for S. Thus prune trades off slightly on accuracy for po-
tentially much reduced space. We generate Q by querying Q′ for elements
of rank 1, |S|/B, 2|S|/B, ..., |S|, and for each element qi ∈ Q, we define
rminQ(qi) = rminQ′(qi), and rmaxQ(qi) = rmaxQ′(qi).

Lemma 2. Let Q′ be an ǫ′-approximate quantile summary for a multiset S.
Then prune(Q′, B) produces an (ǫ′ + 1/(2B))-approximate quantile summary
Q for S containing at most B + 1 elements.

Proof. For any pair of consecutive elements qi, qi+1 in Q, rmaxQ(qi+1) −
rminQ(qi) ≤ (1

B + 2ǫ′)|S|. By Proposition 1, it follows that Q must be
(ǫ′ + 1/(2B))-approximate.

3 Deterministic Algorithms

In this section, we will develop a unified framework that captures many of
the known deterministic algorithms for computing approximate quantile sum-
maries. This framework appeared in the work of Manku, Rajagopalan, and
Lindsay [13], and we refer to it as the MRL framework. We show various earlier
approaches for computing approximate quantile summaries are all captured
by this framework, and the best-possible algorithm in this framework com-
putes an ǫ-approximate quantile summary using O(log2(ǫn)/ǫ) space. We then
present an algorithm due to Greenwald and Khanna [10] that deviates from
this framework and reduces the space needed to O(log(ǫn)/ǫ). This is the cur-
rent best known bound on the space needed for computing an ǫ-approximate
quantile summary. We start with some classical results on exact algorithms
for selection.

3.1 Exact Selection

In a natural but a restricted model of computation, Munro and Patterson [15]
established almost tight bounds on deterministic selection with bounded
space. In their model, the only operation that is allowed on the underlying
elements is a pairwise comparison. At any time, the summary stores a subset
of the elements in the data stream. They considered multi-pass algorithms
and showed that any algorithm that solves the selection problem in p passes
requires Ω(n1/p) space. Moreover, there is a simple algorithm that can solve
the selection problem in p passes using only Ω(n1/p(log n)2−2/p) space. The
proofs of both these results are elementary and we establish them both here.
We start with the lower bound result.

We focus on the problem of determining the median element using space
s. Fix any deterministic algorithm and let us consider the first pass made by

Quantiles and Equidepth Histograms over Streams 7

the algorithm. Without any loss of generality, we may assume that the first s
elements seen by the algorithm get stored in the summary Q. Now each time
an element x is brought into Q, some element y is evicted from the summary
Q. Let U(y) denote the set of elements that were evicted from Q to make
room for element y directly or indirectly. An element z is indirectly evicted
by an element y in Q if the element y′ evicted to make room for y directly
or indirectly evicted the element z. Clearly, x will never get compared to any
elements in U(y) or the element y. We set U(x) = U(y)∪ {y}. The adversary
now ensures that x is indistinguishable from any element in U(x) with respect
to the elements seen so far. Let z1, z2, ..., zs be the elements in Q after the
first n/2 elements have been seen. Then

∑s
i=1

|U(zi)| = n/2 − s, and by
pigeonhole principle, there exists an element zj such that |zj∪U(zj)| ≥ n/(2s).
The adversary now adjusts the values of the remaining n/2 elements so as to
ensure that the median element for the entire sequence is the median element
of the set U(zj) ∪ {zj}. Thus after one pass, the problem size reduces by a
factor of 2s at most. For the algorithm to succeed in p passes, we must have
(2s)p ≥ n, that is, s = Ω(n1/p).

Theorem 1. [15] Any p-pass algorithm to solve the selection problem on a
stream of n elements requires Ω(n1/p) space.

The Munro and Patterson algorithm that almost achieves this space bound
proceeds as follows. The algorithm maintains at all times a left and a right
“filter” such that the desired element is guaranteed to lie between them. At the
beginning, the left filter is assumed to be −∞ and the right filter is assumed
to be +∞. Starting with an initial bound of n candidate elements contained
between the left and the right filters, the algorithm in each pass gradually
tightens the gap between the filters until the final pass where it is guaranteed
to be less than s. The final pass is then used to determine the exact rank
of the filters and retain all candidates in between to output the appropriate
answer to the selection problem. The key property that is at the core of their
algorithm is as follows.

Lemma 3. If at the beginning of a pass, there are at most k elements that
can lie between the filters, then at the end of the pass, this number reduces to
O((k log2 k)/s).

Thus each pass of the algorithm may be viewed as an approximate selection
step, with each step refining the range of the approximation achieved by the
preceding step. We describe the precise algorithmic procedure to achieve this
in the next subsection. Assuming the lemma, it is easy to see that by choosing
s = Θ(n1/p(log n)2−2/p), we can ensure that after the ith pass, the number of

candidate elements between the filters reduces to at most n
p−i

p log
2i
p n. Setting

i = p− 1, ensures that the number of candidate elements in the pth pass is at
most n1/p(log n)2−2/p.

8 Michael B. Greenwald and Sanjeev Khanna

3.2 MRL Framework for ǫ-approximate Quantile Summaries

A natural way to construct quantile summaries of large quantities of data is by
merging several summaries of smaller quantities of data. Manku, Rajagopalan,
and Lindsay [13] noted that all one-pass approximate quantile algorithms prior
to their work (most notably, [15, 1]) fit this pattern. They defined a frame-
work, refered from here on as the MRL framework, in which all algorithms can
be expressed in terms of two basic operations on existing quantile summaries:
new and collapse. Each algorithm in the framework builds a quantile sum-
mary by applying these operations to members of a set of smaller, fixed sized,
quantile summaries. These fixed size summaries are referred to as buffers. A
buffer is a quantile summary of size k that summarizes a certain number of
observations. When a buffer summarizes k′ observations we define the weight
of the buffer to be ⌈k′

k ⌉.
new fills a buffer with k new observations from the input stream (we

assume that n is always an integral multiple of k). collapse takes a set of
buffers as input and returns a single buffer summarizing all the input buffers.

Each algorithm in the framework is parameterized by b, the total number of
buffers, and k, the number of entries per buffer, needed to summarize a sample
of size n to precision ǫ, as well as a policy that determines when to apply new

and collapse. Further, the authors of [13] proposed a new algorithm that
improved upon the space bk needed to summarize n observations to a given
precision ǫ. In light of more recent work, it is illuminating to recast the MRL
framework in terms of rmin() and rmax() for each entry in the buffer.

A buffer of weight w in the MRL framework is a quantile summary of kw
observations, where k is the number of (sorted) entries in the buffer. Each
entry in the buffer consists of a single value that represents w observations
in the original data stream. We associate a level, l, with each buffer. Buffers
created by new have a level of 0, and buffers created by collapse have a
level, l′, that is one greater than the maximum l of the constituent buffers.

new takes the next k observations from the input stream, sorts them in
ascending order, and stores them in a buffer, setting the weight of this new
buffer to 1. This buffer can reproduce the entire sequence of k observations
and therefore rmin and rmax of the ith element both equal i, and the buffer
has precision that can satisfy even ǫ = 0.

collapse summarizes a set of α buffers, B1, B2, . . . , Bα, with a single
buffer B, by first calling combine(B1, B2, . . . , Bα), and then3 prune(B, k−1).
The weight of this new buffer is

∑

j wj .

Lemma 4. Let B be a buffer created by invoking collapse on a set of α
buffers, B1, B2, . . . , Bα, where each buffer Bi has weight wi and precision ǫi.
Then B has precision ≤ 1/(2k − 2) + maxi{ǫi}.

3 The prune phase of collapse in the MRL paper differs very slightly from our
prune.

Quantiles and Equidepth Histograms over Streams 9

Proof. By Corollary 1, repeated application of combine creates a temporary
summary, Q, with precision maxi{ǫi} and αk entries. By Lemma 2, B =
prune(Q, k − 1) produces a summary with an ǫ that is 1/(2k − 2) more than
the precision of Q.

We can view the execution of an algorithm in this framework as a tree.
Each node represents the creation of a new buffer of size k: leaves represent
new operations and internal nodes represent collapse. Figure 1 represents
an example of such a tree. The number next to each node specifies the weight
of the resulting buffer. The level, l, of a buffer represents its height in this
tree.

Lemma 4 shows that each collapse operation adds at most 1/(2k) to the
precision of the buffer. It follows from repeated application of Lemma 4 that
a buffer of level l has a precision of l/2k. Similarly, we can relate the precision
of the final summary to the height of the tree.

Corollary 2 Let h(n) denote the maximum height of the algorithm tree on an
input stream of n elements. Then the final summary produced by the algorithm
is (h(n)/(2k))-approximate.

We now apply the lemmas to several different algorithms, in order to com-
pute the space requirements for a given precision and a given number of
observations we wish to summarize.

Munro-Patterson Algorithm

4

22

1

88

16

444

222222

4

22

1 111111111

N = 4k
e = 1/(k)

b = 3

111 111 11

N = 16k
e = 2/(k)

b = 5

1

Fig. 1. Tree representations of Munro-Patterson algorithm for b = 3, and 5. Note
that the final state of the algorithm under a root consists of the pair of buffers that
are the children of the root. The shape and height of a tree depends only on b, and is
independent of k, but the precision, ǫ, and the number of observations summarized,
n, are both functions of k.

The Munro-Patterson algorithm [15] initially allocates b empty buffers. Af-
ter k new observations arrive, if an empty buffer exists, then new is invoked.

10 Michael B. Greenwald and Sanjeev Khanna

If no empty buffer exists, then it creates an empty buffer by calling collapse

on two buffers of equal weight. Figure 1 represents the Munro-Patterson al-
gorithm for small values of b.

Let h = ⌈log(n/k)⌉. Since the algorithm merges at each step buffers of
equal weight, it follows that the resulting tree is a balanced binary tree of
height h where the leaves represent k observations each, and each internal
node corresponds to k2i observations for some integer 1 ≤ i ≤ h. The number
of available buffers b must satisfy the constraint b ≥ h since if n = k2h − 1,
the resulting summary requires h buffers with distinct weights of 1, 2, 4, ... etc.
By Corollary 2, the resulting summary is guaranteed to be h/2k-approximate.
Given a desired precision ǫ, we need to satisfy h/2k ≤ ǫ. It is easy to verify
that choosing k = ⌈(log(2ǫn))/(2ǫ)⌉ satisfies the precision requirement. Thus
the total space used by this algorithm is bk = O(log2(ǫn)/ǫ).

Alsabti-Ranka-Singh Algorithm

The Alsabti-Ranka-Singh Algorithm [1] allocates b buffers and divides them,
equally, into two classes. The first b/2 buffers are reserved for the leaves of the
tree. Each group of kb/2 observations are collected into b/2 buffers using new,
and then collapseed into a single buffer from the second class. This process
is repeated b/2 times, resulting in b/2 buffers with weight b/2 as children of
the root. After the last such operation, the b/2 leaf buffers are discarded.

The depth of the Alsabti-Ranka-Singh tree is always 2, so by Corollary 2,
k ≥ 1/ǫ. We need k ∗ (b/2)2 ≥ n to cover all the observations. Given that
b increases coverage quadratically and k only linearly, it is most efficient to
choose the largest b and smallest k that satisfy the above constraints if we
wish to minimize bk. The smallest k is 1/ǫ, hence (b/2)2 ≥ ǫn, so b ≥

√

ǫn/4,

and bk = O(
√

n/ǫ).

N = 16k
e = 1/(k)

b = 8

111

b = 6

16

4444

1

9

33

11

3

1

N = 9k
e = 1/(k)

1111 11111 1111111 11

Fig. 2. Tree representation of Alsabti-Ranka-Singh algorithm. For any specific
choice of b1 and b2, for b1 6= b2, the tree for b = b1 is not a subtree of b = b2.
The precision, ǫ, and the number of observations summarized, n, are both functions
of k.

Quantiles and Equidepth Histograms over Streams 11

Manku-Rajagopalan-Lindsay Algorithm

It is natural to try to devise the best algorithm possible within the MRL
framework. It is easy to see that, for a given b and k, the more leaves an algo-
rithm tree has, the more observations it summarizes. Also, from Corollary 2,
the shallower the tree, the more precise the summary is. Clearly, for a fixed
b it is best to construct the shallowest and widest tree possible, in order to
summarize the most observations with the finest precision.

However, both algorithms presented above are inefficient in this light. For
example, Alsabti-Ranka-Singh is not as wide as possible. After the algorithm
fills the first b/2 buffers, it invokes collapse, leaving all buffers empty except
for one buffer with precision 1/(2k) summarizing bk/2 observations. However,
there is no need for it to call collapse at that point — there are b/2 empty
buffers remaining. If it deferred calling collapse until after filling all b buffers,
the results would again be all buffers empty except for one buffer with precision
1/(2k), but this time summarizing bk observations. Even worse, after b/2 calls
to collapse, Alsabti-Ranka-Singh discards the b/2 “leaf buffers”, although
if it kept those buffers, and continued collecting, it could keep on collecting,
roughly, a factor of b/2 times as many observations with no loss of precision.

The Munro-Patterson algorithm does use empty buffers greedily. However,
it is not as shallow as possible. Munro-Patterson requires a tree of height
log β to combine β buffers, because it only collapses pairs of buffers at a
time, instead of combining the entire set at once. Had Munro-Patterson called
collapse on the entire set in a single operation, it would end with a buffer
with log β/(2k) higher precision (there is a loss of precision of 1/(2k) for each
call to collapse).

The new Manku-Rajagopalan-Lindsay (MRL) algorithm [13] aims to use
the buffers as efficiently as possible - to build the shallowest, widest tree it can
for a fixed b. The MRL algorithm never discards buffers; it uses any buffers
that are available to record new observations. The basic approach taken by
MRL is to keep the algorithm tree as wide as possible. It achieves this by
labeling each buffer Bj with a level Lj , which denotes its height (see Figure 3).
Let l denote the smallest value of Lj for all existing, full, buffers. The MRL
policy is to allocate new buffers at level 0 until the buffer pool is exhausted,
and then to call collapse on all buffers of level l. More specifically MRL
considers two cases:

• Empty buffers exist. Call new on each and assign level 0 to them.
• No empty buffers exist. Call collapse on all buffers of level l and assign

the output buffer a level L of l + 1.

If level l contains only 2 buffers, then collapse frees only a single buffer
which new assigns level 0. When that buffer is filled, it is the only buffer
at level 0. Calling collapse on a single buffer merely increments the level
without modifying the buffer. This will continue until the buffer is promoted
to level l, where other buffers exist. Thus MRL treats a third case specially:

12 Michael B. Greenwald and Sanjeev Khanna

• Precisely one empty buffer exists. Call new on it and assign it level l.

b = 3
N = 15k

h = 4

1

3

1

4
1

e <= 3/(2k)

h = 3
b = 3
N = 10k

15e <= 2/k

1

1

6

2

1 1

3

2

1

10

1 1

1

3

2

1

10

1

20

1

3

1

3

1

4
1

10

2

e <= 1/k

h = 2

h = 3

e <= 3/(2k)
h = 4

N = 35k
e <= 2/k

b = 4
N = 10k

b = 4
N = 20k

b =4

3

1

4
1

35

1

1

11 1 1 1 1 111

1

6

1

3

2

1 1 1

1

3

1

2 2

6

1

1

11 1 1

e <= 1/k

b = 3
N = 6k

h = 2

1 1

2

11

3

1

11

2

Fig. 3. Tree representation of Manku-Rajagopalan-Lindsay algorithm.

Proposition 2 In the tree representing the collapses and news in an MRL
algorithm with b buffers, the number of leaves in a subtree of height h, L(b, h),

is

(

b + h − 2
h − 1

)

.

Proof. We will prove by induction on h that L(b, h) =

(

(b − 1) + (h − 1)
h − 1

)

.

For h = 1 the tree is a single node, a leaf. So, for all b, L(b, 1) = 1 =
(

b − 1
0

)

.

Assume that for all h′ < h, for all b, that L(b, h′) =

(

(b − 1) + (h′ − 1)
h′ − 1

)

.

L(b, h) is equal to
∑b

i=1
L(i, h−1). To see this, note that we build the hth

level by finishing a tree of (b, h − 1), then collapsing it all into 1 buffer. Now
we have b− 1 buffers left over to build another tree of height h− 1. When we
finish, we collapse that into a single buffer, and start over building a tree of
height h− 1 with b− 2 buffers, and so on, until we are left with only 1 buffer,
which we fill. At that point we have no free buffers left and so we collapse
all b buffers into the single buffer that is the root at height h. By the induc-

tion hypothesis we know that L(b, h − 1) =

(

(b − 1) + (h − 2)
h − 2

)

. Therefore

L(b, h) =
∑b

i=1

(

(i − 1) + (h − 2)
h − 2

)

, or L(b, h) =
∑b−1

i=0

(

(i + (h − 2)
h − 2

)

. But

by summation on the upper index, we have L(b, h) =
∑b−1

i=0

(

(i + (h − 2)
h − 2

)

=
(

(b − 1) + 1 + h − 2
h − 1

)

=

(

(b − 1) + (h − 1)
h − 1

)

.

