34 L.G. Valians

mmuu_ MW mmwﬁw? The Complexity of Computing (Wiley, New 43# 1976).
chnorr, A lower bound on the number of additions in monoto i
. “Comput. Sei. 2 (1976) 305-315. " noa_u:"mro:m. Theort
[19] E. Shamir E.a_ M. Snir, Lower bounds on the number of multiplications and the number of additions
in monofone computations, Research Report, IBM, Yorktown Heights, NY (1877).
[20] V. Strassen, Gaussian elimipation is not optimal, Numer. Math. 13 (1969) 354-356.
[21] V. Strassen, Vermeidung vor Divisionen, J. Relne Angew. Math. 264 (1973) 182-202.

221 L. G, (_N:mbn Ooaﬁ_n»ﬂzﬂmm G_Nwmﬂm inal ebra, Proc. 1 »&n._xymsuuﬁnvhwthﬂ on u.nnmn! 0\ nb_s.u__uaak
g] Ith y
14

[23] 1. Wegener, Switching m::nﬂo:m whose monoton

.@3@9::5 on Theory of Computing (1978) 143-149,

e complexity is nearly quadratic, Proc. 16th ACM

Theoretical Computer Science 12 (1980) 315-323°
© North-Holland Publishing Company

SELECTION AND SORTING WITH LIMITED STORAGE

JI.MUNRO* o

Department of Computer Science, University of Waterloo, Ontario, Canada

M.S. PATERSON ,
Department of Computer Science, University of Warwick, Coventry, United Kingdom
. s

Commaunicated by A. Schonhage
Received June 1979
Revised March 1980

Abstract. When selecting from, or sorting, a file stored on a read-only tape and the internal storage
is rather limited, several passes of the input tape may be required. We study the relation betwéen -
the amount of internal storage available and the number of passes required to select the Kth highest
of N inputs. We show, for example, that to find the median in two passes requires at least 2(N H.... 3.
and at most O(N /2 10g N} internal storage. For probabilistic methods, §(N 2y internal storageis
necessary and sufficient for a single pass method which finds the Bn&m: with arbitrarily Emﬂ R
probability. L

1. Iniroduction

As a paradigmatic study of effects of internal storage limitations on large-scale,
data-processing tasks, we consider problems of searching and sorting in data stored
on a one-way read-only tape when the amount of random-access working space is
severely constrained. We shall quantify rather closely the relation between the -
number of passes over the input file which are required for these tasks and the -
amount of storage available for a given size of the file. In several cases the upper
bounds are demonstrated by new sampling algorithms of some practical interest; :

In our computational model the data is a sequence of N distinct elements stored o,.z. ,
a one-way read-only tape. An element from the tape can be read into one of §
locations of random-access storage. The elements are from some totally ordered set
{for example the real numbers) and a binary comparison can be made at any time
between any two elements within the random-access storage. Initially the storage'is.
empty and the tape is placed with the reading head at the beginning. After mwo: pass -
the tape is rewound to this position with no reading permitted.

...;_mmErE.s.mmvm:_m__wmsuuozoag_mmoEE.<_m:_:mmo=o€mrﬁmﬁoa"rnmennnn Nmmnwﬂ: Oocaﬁ_
while visiting the Cs:.,aa:v. of ﬁ.ﬁ,ﬁnw : :

315-

316 _ _
LI Munro, M.S. Paterson
L.1. Notational note

For functions of sey, ‘
. eral arguments we sh i
cuch that | shall write f(X)=O(e(x
hch the \._ MA.D M_ VAHMWANM for all X except those naturally or mwuﬁ_womzuwvouhmm m..% e
e = g1 1or g =0(f); and we use f=g(g) for f=0(g) and ¢ = Pl
Wwe present results concerning the problem of sorting EMMMWMD h
, where,

convenience we adopt a termj
nology of altitude j
terms such g g s ude m respect of the orderj
. » ‘below’, ‘lower than’, T i ccinton
i fnding the monest’ an’. The most interestin special i
n (i.e. when K = 2. By symmetry we may M_%mvﬁ mMHNMﬂm:w
a
It is easy to sh i
Kt b Wﬂ m_aEMMMMmM M‘ ._.w 1 WOnmsozm are necessary and sufficient to retrieve th,
Stomage oy e ment mnl_..E lchmz D ina single pass. Algorithms using this E“M%mw
. , ere it is shown th i
o at f
o me”wonm maw Wooama. whereas for K ~aN o fixed QH. Em_ e e BG)
; 1ghest requires < (N log N) noSvmamo:.m . =5 heretrievalof the
I contrast, a two-pass ilisti .
y probabilistic meth i
3N +0(N) compari i i g oo oLy GNP
parisons is presented in [2]. Making use of an internal me_mu“w._m.) mb.n_
1zer, it

ility, which is indepen-

The principal resul i
ts obtained in thj §
show the amount of stor : S Paper are upper and lower b .
age required by a p- . ¥ bounds which
be roughly N/7 ¥ a P’-pass deterministic selecti i
. o
input orderings mH.MVM:Mn _Mom..u:m are that under the rather strong mmmEM Mmo_.“m._s o
of selecting the Ema.@ ally :mww. for asingle-pass algorithm with a hj % iy ﬂ. al
1an, §(N"'*) locations are necessary and sufficj b pectation
cient,

2. Elementary results

program memory may be obtained at tl
location is to hold the fowest element T
compared with this to determine wheth
algorithms to be described will use thi

domain of practicality. G T .

rgument to establish the following resu
Theorem 1. The least storage requir
9(N/P).

Proof. In view of the algorithm given above we require only a lower bound
that the ordering of the data is such that 1st, 3rd, 5th,. . . highest elements’

imited storage

:o:n should be ignored. N
echnique in order to remain

We give a simple lower bound a

¢d by any P-pass sorting algorithm for Neler

first half of the tape, whereas the 2nd, 4th, 6th, .. arein the second half. Sineé:

algorithm must at some time make a direct comparison between the (2r=1)
(2rithelementsforr=1,..., mz._.. either the odd-ranked element must be cair
in storage at some forward transition: across the midpoint of the tape o
even-ranked element must be retained during some intermediate rewind. If P pas
are used by an algorithm for this case, we can argue that o

2P-18=1iN].
Hence § > N/4P,

3. Multi-pass algorithms for selection

When S is more than about (log N)* an efficient algorithm may be mmﬁmrna ag
follows. At the beginning of each pass.a pair of elements, filters, between which the
required element is guaranteed to lie, is retained in the storage, though their preci
ranks may so far be undetermined. At the start of the algorithm we may pretend tha
‘ideal’ elements representing ==co fulfil this role. During the pass any elements.n
between the filters are used merely to establish the-exact ranks of the filters. Froni t
remainder a suitably constructed sample is retained from which a new pair of filte

selected. :
For the initial pass the number of elements between the filters is N, and for the

pass this is to be reduced to st oSt S =2 s that alf siich elements can be retained i
a final selection. With the details of the algorithm we shall establish the following

relation.

Lemma 1. If af most n elements lie between the filters at the beginning of a pass, then fo

the following pass this number is O(n{log n)*/8).

A simple estimation from this lemma yields the next upper bound.

318 LI Munro, M.S. Paterson

H....oc-d:—u.b ﬁ.ﬁn,a&wo:.«mi E..«:.nx mm&n%%mﬁ&}mmxmi of N.elemenis requires
storagé at most O(N''/* (log N)*~2/%y, :

3.1. Outline of the algorithm - : . o

For some fixed even s, 2 sample at level i will be a sorted subset of s elements
chosen from a specified set of 2's ,.m_mﬁmim, its h@&nn.oz according to the following
scheme, . _)

A sample at level 0 consists of the whole set of 2% elements in sorted order. A
sample at level { + 1 is formed by splitting the population of 2i+'s elements into equal
halves, taking a sample at level / from each half, ‘thinning’ each by retaining only the
second, fourth, sixth, . . . elements from the top in each, and then merging the two
subsamples to form one sorted sample,

In one pass with n elements, n <2's, between the filters initially, the algorithm
builds a sample at level 7 from these elements (with imaginary elements added to
make up the number to 2's). A recursive procedure is used, forming two samples at
level r—1 from the first and second halves of the set of elements as they are
encountered. A stack for implementing this recursion has depth at most r.

The maximum storage required is for a sub-sample (consisting of even-positioned

“elements of a sample) for each level below the rth, for one ‘working sample’ and for
the pair of filters. This is at most 3rs+s5+2. We choose s=2] whbom n] and
r = flog(n/s)] so that n<2's and the storage required is at most S, when § is
sufficiently large, (We can assume 8= 1£({log r)?).) The storage requirement of the
algorithm can be reduced by a constant factor if samples are combined five at a time
instead of two at a time.

We shall show that a sampie deserves its name in that it contains a reasonably well
spaced selection from the total order of its population, To this end consider the jth
element from the top in a sample at level /. We denote by Li;, My respectively the
least, and most numbers of elements from its corresponding population which can
appear strictly above it in the total order.

Lemma 2. 1, =;2'—1, M, = (i +j - 1)2"

Proef. Clearly, for 1< J=s Ly= My;=j—1. We use the convention that I

i0=~1
for all i =0. From i > 1, /=1, we may then verify that

Ly=min{L,_, ,, +Liz2,+1} pP+g=j

and .

My =max{M;_1 2, +M,_, ...}, ptqg=j, p=0,

From these equations the result may be proved inductively,

q=0.

For a population of size at most 2's from which we wish to select the kth highest we
shall choose as new filters, the uth and sth elements of the final sample at level r,

TN

"

3.2, Very small storage

k—1=M, =(r+u~1)2, Le.u=[k/27-r
and : . o

k-1<L,=0v2"—1, ie.v=[k/2"].

Proof of Lemma 1. The number of elements between the uth and oth
final sample, as defined above, is at most _,

M,—Lp,—-1=(-12"+(v—u)2"=(2r-1)2"

<4rm/s = O(n(log n)*/S)
by the choice of s, r. ,

Itis clear that the m_uoa.m.ﬂmoﬁ:rq_ requires § = 2((log N VJ.. H....o.n WB&_.E...
8, one might employ the more practical of the ‘sorting’ algorithmis and ﬁ_n. Y
after [(K —1)/(S—2)] passes. This is the only algorithm we w:o.s_ for veryisr
storage which does not require extensive program memory. If we anmwm,ua E.m.n@_ :
limitations and allow an algorithm to remember an mac:nm_.w.maoc_: of informatio
about previous comparisons, we can prove the following upper bound.
Theorem 3, For 2 M.m.. =0((log N)), there is a class of selection algorithms which 15
at most O{(log N)*/S) passes.

Proof. The algorithms simulate each pass of the algorithm of Theorem 2 by mo.<om
passes with smaller storage. The comparisons performed in one pass oﬁ. the origin
algorithm can be understood in correspondence with a binary tree of height r. >..ﬂ Ew -
leaves are 2 level 0 samples of size s = [log n]. At successive levels of the tree pairs
of adjacent samples are thinned and merged until the final sample at F.ﬁm _1
reached. . - -
With storage S equal to s, all the operations at one level of the tree can be carried
out in one pass, whereas with § > s, it is possible to execute 8(S/s) levels n.:,.omon
When §<s, a single level can be completed in 8(s/S) passes. .,—,ro moHE._m ‘an
merging operations are done by the naive multi-pass sorting algorithm Ammﬁ._g&
Section 2, applied simultaneously to each sample. The E.oBoQ mmnE.awn_.._u
program to record the partial progress during such an ovonmcwn would be ::o_n
in practice. However in all cases where 2=<§ AnOSom NY) the total m:E_uo.
passes to simulate one pass before is #({log N)*/8). The total of passes fo
selection problem is therefore O{(log N}*/S).

320 LI Munro, M.S. Paterson

4. Lower bounds for multi-pass selection

To show that the upper bounds derived in the
we here present corresponding lower bounds.
‘Adversary’ who,

ordering of the Eu_.: to confound it. He may also supply us with any ex
information whatsoever, which cannot of course adversely affect the performance g
the algorithm but is designed to facilitate the proof. ;

previous section are close to optim,
Our main proof uses the idea of t

.w.ra.a-.mi 4. Any P-pass algorithm to determine the median @w Kith highest fa
IN=K =Q(N)) of N element 7 1P 7 :
s requires at least Q(IN'") storage Iocations.

Corollary 1. The minimum storage S for a two-pass algorithm satisfies
RN <§<O(N?log N).

Proof. Immediate from Lemma 1 and Theorem 4.

Corollary 2. Provided log §=02((log N logIog N2
basses required is log Nflog § +O(1). while for loglog N = o(log 8) we have P~
log N/log §.

‘Proof, Immediate from Theorems 2 and 4.,

‘ The proof of Theorem 4 follows at once from the following Lemma which
establishes that after one pass

.ﬂ:mnn RB.mm:m to be done a computation at least as hard as finding the median for an
nput of size approximately N/2S.

Lemma 3. For any S-location algorithm on N input elements there is an ordering of the

input tape so that after the first pass there is a set X of inputs with the following
properties:

(i) no element of X remains in storage,

(i) no orderings between elements of X are known,
(i) the median of the original set is the median of X,
(iv) X contains at least IN/(28~1)] elements.

Proof. Without loss of generality the algorithm reads the first $ inputs into storage
and decides which one to discard as the (§ + 1)stinputis read. The Adversary ensures
that H.E.m (8'+ 1)st element stands in the same relative ordering with respect to the
remaining S-1 elements in storage as the one it replaces. This strategy for the
Adversary is followed repeatedly, replacing each discarded element by a new
element which is effectively indistinguishable. For x = LN/ (28 —1)], as the (Sx + 1)st

. the maximum number of

of any (median-finding) algorithm using § locationg

om it a set X of at least x elements between which no comparisons have been me
nd no o&alnmm.nmu yet be deduced. It may be verified that the n&.&?n, ordering of
e remaining N - Sx elements may be designed so that the median element is th

dian of X. JRUEUEELES EON PR R S
Whilst the asymptotic constant of w in this lemma can ".u.o raised in In 2, and eve:

her, by a more refined argument, an upper limi , f this approach is marked by the
frivial algorithm, which inputs and discards § at a time and leaves ‘incomparable’ sets

If we make the assumption (not nmnnwnn.._.._a_ﬁmu\ﬁrﬁ m:.EEh owanas.mm”mnm on.mmmw
{likely and we are willing to tolerate some small probability, say 107% of failure, m._,n

the amount of storage required can be B:or
median algorithm finds (N %) storage necessa

For example a single-pas
ufficient. :

3.1 Probabilistic algorithms for selecting S..m _.i.m&na :

For a suitable choice of storage size S, the algorithm maintains in storage for'a
long as it can S — 1 elements whose ranks among those read thus far are consecutiv
and as close to the current median as possible.To this end it keeps two counts H an
L, both initially zero, of the numbers of elemeénts which have so far been discarde
above and below, respectively, the consecutive!segment retained. Under ou
assumption of equal likelihood, the probability that a new element read lies above al
those retained is precisely (H +1)/(H +$+ L),/ In this case the element must be’
discarded and H incremented by one. The case where it lies below the retained
segment is similar. With probability (§—2)/(H +5+L); the new element can be
inserted strictly within the segment and either the highest or lowest of those retaire
is chosen for discarding according as H <[or H =L respectively. S

At the end of the tape the median has been retained and determined provided
H+1<[iN]<N-L.Wehaveonly to estimate the size of § required to guarantee
this result with high probability. The progress of the'algorithm can be viewed as a’
random walk of the integer variable D=H—L. mg.:nm ifrom the origin and a
sufficient condition for the median to be foundis that |D| < § =1 throughout. For any,
¢ >0, there is a constant C such that during the first,CS? steps of a random walk '’
about the origin with equal probabilities of a step to'the H.w_.ﬁ.on left, En probability.
of the random variable ever attaining magnitude: -at most & (sce {3, §IIL7
Theorem 3]). The random walk of D on[—(§ ~1);]for our algorithm is difficut
to analyze exactly since the transition probabilities vary;with D and with time. For’
any such walk which is symmetric about the o_.m.m:.,. the probability of ‘escape’, ie

l »m, C o

322 . , LI Munro, M.S. Paterson

reaching = ($ — 1), before some fixed time is an increasing function of |D|. Let P,;, be
the probability that at time ¢ with |D|=d the value of [D| is increased by 1, and so
1—P,, is the probability of decrease. It is easy to show that the probability of escape

at time T is an increasing function of each P, Since for our walk it can be verified
that

Pi<} for0<d<S—1andali¢=0

the result quoted above for the equal probabilities walk still holds.

The algorithm described can be used as the basis of a multi-pass algorithm in the
following way. For suitably chosen constants C;, C, depending on &, the probability
that the median of the whole input set lies between the extreme elements of the
segment retained after C,§> steps is very high. From this point on, for the remainder
of the pass, the same § ~ 1 elements are retained in storage and their ranks are found
by comparisons with the rest of the input. If one of the retained elements is the
median, the algorithm ﬂmwﬁmamﬁomw if not, the number of elements sharing the same
‘gap’ as the median with respect to the stored elements can be shown to be at most
C.N/§* with high probability. This set of elements satisfy the same assumption as to

randomness as the initial set and so the same procedure may be used for further
passes. Hence

,—.__eono_sm.m.o_‘n:emvaw.u:mmnmhw. nﬁ.ﬁn%im&na%:&:m E.ma:.&iﬁ%
probability of failure at most & which uses only O(N''/2%) storage. :

5.2, Lower bound for probabilistic algorithms

Theorem 6. There is an ¢ >0, such that any che-pass algorithm which finds the
median with probability of failure less than ¢ requires at least (N'?) storage,

Proof. Consider the situation after [iN } elements have been read. The probability is
at least half that the median is one of these, but only § of them can have been
retained. The most likely candidates are towards the middle but the straightforward
estimation of a hypergeometric distribution [3] shows that for a subset of size S of

these elements to contain the median which probability above one quarter requires
S=0Q(NY?),

Corollary 3. For o single-pass algorithm which rearly always finds the median,
(N2 locations are necessary and sufficient.

6. Conclusions

Cur aim has been to determine the precise computational requirements for
specific tasks of selecting from, or sorting, data presented on a read only input tape

Selection and sorting with limited storage

under a regime of limited internal storage. We present new m._m.ouw il
practical interest as well as lower bound proofs which exploit the _o_,_:m n
internal storage and access to input data. : T
Our main algorithm for selection uses a novel sampling technique'a
implemented easily to require only about NGP+log §) comparisons
upper and lower bounds on storage differ only by a factor of order (log N
clear idea of the trade-off relation between the number of passes and th
storage required. : . .
The picture we have in the probabilistic cage is much Iess complete, ;2_:.
readily extensible to give a lower bound of loglog N —log log § ~ OEM umw :
Hn.acr.m that the only information retained from one pass to the next is 2 pair il
and their ranks. It seems likely that the upper bound may be reduced to abo
value but analysis of the algorithms we considered has so far proved intractal

Acknowledgment

The authors wish to thank A. Schénhage and a referee for suggesting i
ments to this paper. .

References

[1] D.P. Dobkin, and I.1. Munro, Time and space bounds for selection EoEan. Proc. 5th Internal
Colloquium on Automata, Languages and Programming, July 1978, Udine, Italy.-

[2] S.C. Eisenstat, R.J. Lipton and J.1. Munro, Probabilistic algorithms, to appear. . ,

[3]1 W. Feller, An Introduction to Probability Theory and Iis Applications: Vol, I (Wiley, New York:
ed., 1968). - :

