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LET’S TALK ABOUT PROJECTS
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THIS CLASS:
MATCHING & NOT THE NRMP

(SEE: LECTURE #9 OF FALL 2016 BY CANDICE SCHUMANN)
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OVERVIEW OF THIS 
LECTURE
Stable marriage problem

• Bipartite, one vertex to one vertex

Stable roommates problem
• Not bipartite, one vertex to one vertex 

Hospitals/Residents problem
• Bipartite, one vertex to many vertices



MATCHING WITHOUT 
INCENTIVES
Given a graph G = (V, E), a matching is any set of pairwise non-
adjacent edges
• No two edges share the same vertex

• Classical combinatorial optimization problem

Bipartite matching:
• Bipartite graph G = (U, V, E)

• Max cardinality/weight matching found easily – O(VE) and better

• E.g., through network flow, Hungarian algorithm, etc
Matching in general graphs:
• Also PTIME via Edmond’s algorithm – O(V2E) and better
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STABLE MARRIAGE 
PROBLEM
Complete bipartite graph with equal sides:

• n men and n women (old school terminology L)
Each man has a strict, complete preference ordering over 
women, and vice versa

Want: a stable matching

Stable matching: No unmatched 
man and woman both prefer each 

other to their current spouses



EXAMPLE PREFERENCE 
PROFILES

Albert Diane Emily Fergie
Bradley Emily Diane Fergie
Charles Diane Emily Fergie

Diane Bradley Albert Charles
Emily Albert Bradley Charles
Fergie Albert Bradley Charles

> >



EXAMPLE MATCHING #1
Albert Diane Emily Fergie
Bradley Emily Diane Fergie
Charles Diane Emily Fergie

Diane Bradley Albert Charles
Emily Albert Bradley Charles
Fergie Albert Bradley Charles

Is this a stable matching?



EXAMPLE MATCHING #1
Albert Diane Emily Fergie
Bradley Emily Diane Fergie
Charles Diane Emily Fergie

Diane Bradley Albert Charles
Emily Albert Bradley Charles
Fergie Albert Bradley Charles

No.
Albert and Emily form a blocking pair.



EXAMPLE MATCHING #2
Albert Diane Emily Fergie
Bradley Emily Diane Fergie
Charles Diane Emily Fergie

Diane Bradley Albert Charles
Emily Albert Bradley Charles
Fergie Albert Bradley Charles

What about this matching?



EXAMPLE MATCHING #2
Albert Diane Emily Fergie
Bradley Emily Diane Fergie
Charles Diane Emily Fergie

Diane Bradley Albert Charles
Emily Albert Bradley Charles
Fergie Albert Bradley Charles

Yes!
(Fergie and Charles are unhappy, but helpless.)



Does a stable solution to the marriage problem always exist?
Can we compute such a solution efficiently?
Can we compute the best stable solution efficiently?

SOME QUESTIONS

Hmm …

Lloyd Shapley David Gale

Hmm …



GALE-SHAPLEY [1962]
1. Everyone is unmatched
2. While some man m is unmatched:

• w := m’s most-preferred woman
to whom he has not proposed yet

• If w is also unmatched:
• w and m are engaged

• Else if w prefers m to her current match m’
• w and m are engaged, m’ is unmatched

• Else: w rejects m
3. Return matched pairs



Claim
GS terminates in polynomial time (at most n2

iterations of the outer loop)

Proof:
• Each iteration, one man proposes to 

someone to whom he has never 
proposed before

• n men, n women à n�n possible events

(Can tighten a bit to n(n - 1) + 1 iterations.)



Claim
GS results in a perfect matching

Proof by contradiction:
• Suppose BWOC that m is unmatched at 

termination
• n men, n women à w is unmatched, too
• Once a woman is matched, she is never 

unmatched; she only swaps partners.  Thus, 
nobody proposed to w

• m proposed to everyone (by def. of GS):  ><



Claim
GS results in a stable matching (i.e., there 

are no blocking pairs)

Proof by contradiction (1):
• Assume m and w form a blocking pair

Case #1: m never proposed to w
• GS: men propose in order of preferences
• m prefers current partner w’ > w
• à m and w are not blocking



Claim
GS results in a stable matching (i.e., there 

are no blocking pairs)

Proof by contradiction (2):
Case #2: m proposed to w
• w rejected m at some point
• GS: women only reject for better partners
• w prefers current partner m’ > m
• à m and w are not blocking

Case #1 and #2 exhaust space.  ><



Does a stable solution to the marriage problem always exist?

Can we compute such a solution efficiently?

Can we compute the best stable solution efficiently?

RECAP: SOME QUESTIONS

We’ll look at a specific notion of “the best” –
optimality with respect to one side of the market



(WO)MAN 
OPTIMALITY/PESSIMALITY
Let S be the set of stable matchings

m is a valid partner of w if there exists some stable matching 
S in S where they are paired

A matching is man optimal (resp. woman optimal) if each 
man (resp. woman) receives their best valid partner

• Is this a perfect matching?  Stable?
A matching is man pessimal (resp. woman pessimal) if each 
man (resp. woman) receives their worst valid partner



Claim
GS – with the man proposing – results in a 

man-optimal matching

Proof by contradiction (1):
• Men propose in order à at least one man was 

rejected by a valid partner
• Let m and w be the first such reject in S
• This happens because w chose some m’ > m
• Let S’ be a stable matching with m, w paired

(S’ exists by def. of valid)



Claim
GS – with the man proposing – results in a 

man-optimal matching

Proof by contradiction (2):
• Let w’ be partner of m’ in S’
• m’ was not rejected by valid woman in S

before m was rejected by w (by assump.)
à m’ prefers w to w’

• Know w prefers m’ over m, her partner in 
S’
à m’ and w form a blocking pair in S’ ><



Does a stable solution to the marriage problem always exist?

Can we compute such a solution efficiently?

Can we compute the best stable solution efficiently?

RECAP: SOME 
QUESTIONS

For one side of the market.  What about the other 
side?

*



Claim
GS – with the man proposing – results in a 

woman-pessimal matching

Proof by contradiction:
• m and w matched in S, m is not worst valid
• à exists stable S’ with w paired to m’ < m
• Let w’ be partner of m in S’
• m prefers to w to w’ (by man-optimality)
• à m and w form blocking pair in S’ ><



INCENTIVE ISSUES
Can either side benefit by misreporting?

• (Slight extension for rest of talk: participants can mark possible 
matches as unacceptable – a form of preference list truncation)

Any algorithm that yields woman-
(man-)optimal matching

à
truthful revelation by women (men) is 

dominant strategy [Roth 1982]



Albert Diane Emily
Bradley Emily Diane

Diane Bradley Albert
Emily Albert Bradley

In GS with men proposing, women can 
benefit by misreporting preferences

Albert Diane Emily
Bradley Emily Diane

Diane Bradley Albert
Emily Albert Bradley

Truthful reporting

Strategic reporting

Albert Diane Emily
Bradley Emily Diane

Diane Bradley x

Emily Albert Bradley

Albert Diane Emily
Bradley Emily Diane

Diane Bradley x

Emily Albert Bradley



Claim
There is no matching mechanism that:

1. is strategy proof (for both sides); and
2. always results in a stable outcome (given 

revealed preferences)



EXTENSIONS TO STABLE MARRIAGE



IMBALANCE [ASHLAGI ET AL. 2013]

What if we have n men and n’ ≠ n women?
How does this affect participants?  Core size?

• Being on short side of 
market: good!

• W.h.p., short side get 
rank ~log(n)

• … long side gets
rank ~random

# women held constant at n’ = 40



IMBALANCE [ASHLAGI ET AL. 2013]

Not many stable matchings with even small imbalances in the 
market



IMBALANCE [ASHLAGI ET AL. 2013]

“Rural hospital theorem” [Roth 1986]:
• The set of residents and hospitals that are unmatched is the 

same for all stable matchings
Assume n men, n+1 women

• One woman w unmatched in all stable matchings
• à Drop w, same stable matchings

Take stable matchings with n women
• Stay stable if we add in w if no men prefer w to their current 

match
• à average rank of men’s matches is low



ONLINE ARRIVAL [KHULLER ET AL. 1993]

Random preferences, men arrive over time, once matched 
nobody can switch
Algorithm: match m to highest-ranked free w

• On average, O(nlog(n)) unstable pairs
No deterministic or randomized algorithm can do better than 
Ω(n2) unstable pairs!

• Not better with randomization L



INCOMPLETE PREFS
[MANLOVE ET AL. 2002]

Before: complete + strict preferences
• Easy to compute, lots of nice properties

Incomplete preferences
• May exist: stable matchings of different sizes

Everything becomes hard!
• Finding max or min cardinality stable matching
• Determining if <m,w> are stable
• Finding/approx. finding “egalitarian” matching



NON-BIPARTITE GRAPH …?
Matching is defined on general graphs:

• “Set of edges, each vertex included at most once”
• (Finally, no more “men” or “women” …)

The stable roommates problem is stable marriage 
generalized to any graph
Each vertex ranks all n-1 other vertices

• (Variations with/without truncation)
Same notion of stability



IS THIS DIFFERENT THAN STABLE 
MARRIAGE?

Alana Brian Cynthia Dracula
Brian Cynthia Alana Dracula
Cynthia Alana Brian Dracula
Dracula (Anyone) (Anyone) (Anyone)

> >

No stable matching exists!
Anyone paired with Dracula (i) prefers 

some other v and (ii) is preferred by that v



HOPELESS?
Can we build an algorithm that:

• Finds a stable matching; or

• Reports nonexistence

… In polynomial time?

Yes! [Irving 1985]
• Builds on Gale-Shapley ideas and

work by McVitie and Wilson [1971]

Hmm …



IRVING’S ALGORITHM: 
PHASE 1
Run a deferred acceptance-type algorithm
If at least one person is unmatched: nonexistence
Else: create a reduced set of preferences

• a holds proposal from b à a truncates all x after b
• Remove a from x’s preferences
• Note: a is at the top of b’s list

If any truncated list is empty: nonexistence
Else: this is a “stable table” – continue to Phase 2



1. a is first on b’s list iff b is last on a’s
2. a is not on b’s list iff

• b is not on a’s list
• a prefers last element on list to b

3. No reduced list is empty
Note 1: stable table with all lists length 1 is a stable matching
Note 2: any stable subtable of a stable table can be obtained 
via rotation eliminations

STABLE TABLES



Stable table has length 1 lists: return matching
Identify a rotation:

Eliminate it:
• a0 rejects b0, proposes to b1 (who accepts), etc.

If any list becomes empty: nonexistence
If the subtable hits length 1 lists: return matching

IRVING’S ALGORITHM: 
PHASE 2

(a0,b0),(a1,b1),…,(ak-1,bk-1) such that:
• bi is first on ai’s reduced list
• bi+1 is second on ai’s reduced list (i+1 is mod k)



Claim
Irving’s algorithm for the stable roommates 

problem terminates in polynomial time –
specifically O(n2).

This requires some data structure considerations
• Naïve implementation of rotations is ~O(n3)



ONE-TO-MANY MATCHING
The hospitals/residents problem (aka college/students 
problem aka admissions problem):
• Strict preference rankings from each side

• One side (hospitals) can accept q > 1 residents

Also introduced in [Gale and Shapley 1962]
Has seen lots of traction in the real world
• E.g., the National Resident Matching Program (NRMP)

• 5/1 – will talk about school choice



NEXT CLASS:
REAL-WORLD MATCHING: ORGAN EXCHANGE
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