
APPLIED MECHANISM 
DESIGN FOR SOCIAL GOOD
JOHN P DICKERSON

Lecture #12 – 03/06/2018

CMSC828M
Tuesdays & Thursdays
9:30am – 10:45am



THIS CLASS:
ORGAN EXCHANGE
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KIDNEY TRANSPLANTATION
• US waitlist: over 100,000

• 36,157 added in 2014

• 4,537 people died while waiting
• 11,559 people received a kidney

from the deceased donor waitlist
• (See last class’ lecture on deceased donor allocation.)

• 5,283 people received a kidney from a living donor
• Some through kidney exchanges!

1988 1993 1998 2003 2008 2013

Transplants Waiting List
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[Roth et al. 2004]
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Last time, 
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NON-DIRECTED DONORS & CHAINS

Not executed simultaneously, so no length cap required based on 
logistic concerns …

… but in practice edges fail, so often some finite cap is used!

NDD

P1

D1

P2

D2

P3

D3

…Pay it 
forward

[Rees et al. 2009]
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THE CLEARING PROBLEM

The clearing problem is to find the “best” disjoint set of 
cycles of length at most L, and chains (maybe with a cap K)

• Very hard combinatorial optimization problem that we will 
focus on in the succeeding two lectures.
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INDIVIDUAL 
RATIONALITY (IR)

Long-term IR: 
• In the long run, a center will receive at least the same number 

of matches by participating
Short-term IR:

• At each time period, a center receives at least the same 
number of matches by participating

Will I be better off participating in the 
mechanism than I would be otherwise?
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STRATEGY 
PROOFNESS

In any state of the world …
• { time period, past performance, competitors’ strategies, 

current private type, etc }
… a center is not worse off reporting its full private set of 
pairs and altruists than reporting any other subset

Do I have any reason to lie to the 
mechanism?

à No reason to strategize
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EFFICIENCY

Efficiency:
• Produces a maximum (i.e., max global social welfare) 

matching given all pairs, regardless of revelation
IR-Efficiency:

• Produces a maximum matching constrained by short-term 
individual rationality

Does the mechanism result in the absolute 
best possible solution?
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FIRST: ONLY CYCLES (NO CHAINS)
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THE BASIC KIDNEY 
EXCHANGE GAME
Set of n transplant centers Tn = {t1 ... tn}, each with a set of 

incompatible pairs Vh

Union of these individual sets is V, which induces the 
underlying compatibility graph

Want: all centers to participate, submit full set of pairs

An allocation M is k-maximal if there is no allocation M' that 
matches all the vertices in M and also more
• Note: k-efficient à k-maximal, but not vice versa

[Ashlagi & Roth 2014, and earlier] 
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INDIVIDUALLY RATIONAL?
• Vertices a1, a2 belong to center a, 

b1, b2 belong to center b
• Center a could match 2 internally
• By participating, matches only 1 of its own
• Entire exchange matches 3 (otherwise only 2)

[Ashlagi & Roth 2014, and earlier] 

b1 b2

a2a1

Center b

Center a
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IT CAN GET MUCH WORSE

• Bound is tight

• All but one of a's vertices is part 
of another length k exchange 
(from different agents)

• k-maximal and IR if a matches his 
k vertices (but then nobody else 
matches, so k total)

• k-efficient to match (k-1)*k

[Ashlagi & Roth 2014, and earlier] 

Theorem: For k>2, there exists G s.t. no IR k-
maximal mechanism matches more than 1/(k-1)-
fraction of those matched by k-efficient allocation

Example: k=3 13



RESTRICTION #1

Proof sketch: construct k-efficient allocation for each 
specific hospital's pool Vh
Repeatedly search for larger cardinality matching in an entire 
pool that keeps all already-matched vertices matched (using 
augmenting matching algorithm from Edmonds)
Once exhausted, done
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Theorem: For all k and all compatibility graphs, 
there exists an IR k-maximal allocation

[Ashlagi & Roth 2014, and earlier] 



RESTRICTION #2

Idea: Every 2-maximal allocation is also 2-efficient
• This is a PTIME problem with, e.g., a standard O(|V|3) bipartite 

augmenting paths matching algorithm

By Restriction #1, 2-maximal IR always exists à this 2-
efficient IR always exists
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[Ashlagi & Roth 2014, and earlier] 

Theorem: For k=2, there exists an IR 2-efficient 
allocation in every compatibility graph



RESTRICTION #3

Suppose mechanism is IR and maximal . . .

[Ashlagi et al. 2015] 

Theorem: No IR mechanism is both maximal and 
strategyproof (even for k=2)
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MORE NEGATIVE MECHANISM 
DESIGN RESULTS
Just showed IR + strategyproof à not maximal
No IR + strategyproof mechanism can guarantee more than 
½-fraction of efficient allocation
• Idea: same counterexample, note either the # matched for 

hospital a < 3, or # matched for hospital b < 2.  Proof by cases 
follows

No IR + strategyproof randomized mechanism can guarantee 
7/8-fraction of efficiency
• Idea: same counterexample, bounds on the expected size of 

matchings for hospitals a, b

[Ashlagi et al. 2015] 
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HOPELESS …?
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DYNAMIC, CREDIT-
BASED MECHANISM
Repeated game
Centers are risk neutral, self interested
Transplant centers have (private) sets of pairs:

• Maximum capacity of 2ki
• General arrival distribution, mean rate is ki
• Exist for one time period

Centers reveal subset of their pairs at each time period, can 
match others internally

[Hajaj et al. AAAI-2015]
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CREDITS
Clearinghouse maintains a credit balance ci for each 
transplant center over time
High level idea:

• REDUCE ci: center i reveals fewer than expected
• INCREASE ci: center i reveals more than expected

• REDUCE ci: mechanism tiebreaks in center i’s favor
• INCREASE ci: mechanism tiebreaks against center I

Also remove centers who misbehave “too much.”

Credits now à matches in the future
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THE DYNAMIC MECHANISM
1. Initial credit update

• Centers reveal pairs
• Mechanism updates credits according to ki

2. Compute maximum global matching
• Gives the utility Ug of a max matching

3. Selection of a final matching
• Constrained to those matchings of utility Ug

• Take ci into account to (dis)favor utility given by matching to a 
specific center i

• Update ci based on this round’s (dis)favoring
4. Removal phase if center is negative for “too long”
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THEORETICAL 
GUARANTEES

Theorem: No mechanism that supports cycles 
and chains can be both long-term IR and 

efficient

Theorem: Under reasonable assumptions, the 
prior mechanism is both long-term IR and 

efficient
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LOTS OF OPEN 
PROBLEMS HERE
Dynamic mechanisms are more realistic, but …
• Vertices disappear after one time period

• All hospitals the same size

• No weights on edges

• No uncertainty on edges or vertices

• Upper bound on number of vertices per hospital

• Distribution might change over time

• ...
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Project?



WHAT DO EFFICIENT MATCHINGS 
EVEN LOOK LIKE …?
Next class: given a specific graph, what is the “optimal 
matching”
This class: given a family of graphs, what do ”optimal 
matchings” tend to look like?
Use a stylized random graph model, like [Saidman et al. 2006]:

• Patient and donor are drawn with blood types randomly 
selected from PDF of blood types (roughly mimics US 
makeup), randomized “high” or “low” CPRA

• Edge exists between pairs if candidate and donor are ABO-
compatible and tissue type compatible (random roll weighted 
by CPRA)
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RANDOM GRAPH PRIMER
Canonical Erdős-Rényi random graph G(m,p) has m vertices and 
an (undirected) edge between two vertices with probability p
• Let Q be the property of “there exists a perfect matching” in this 

graph
The convergence rate to 1 (i.e., “there is almost certainly a near 
perfect matching in this graph) is exponential in p
• Pr(G(m,m,p) satisfies Q) = 1 – o(2-mp)
• At least as strong with non-bipartite random graphs

Early random graph results in kidney exchange are for “in the 
large” random graphs that (allegedly) mimic the real 
compatibility graphs
• All models are wrong, but some are useful?
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A STYLIZED ERDŐS-RÉNYI-STYLE 
MODEL OF KIDNEY EXCHANGE
In these random (ABO- & PRA-) graphs:

• # of O-{A, B, AB} pairs > {A, B, AB}-O pairs
• # of {A, B}-AB pairs > AB-{A, B} pairs
• Constant difference between # A-B and # B-A

Idea #1: O-candidates are hard to self-match

Idea #2: {A, B}-candidates are hard to self-match

Idea #3: “symmetry” between A-B and B-A (equally hard to 
self-match, give or take)  
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EFFICIENT MATCHING IN DENSE 
GRAPHS WITH ONLY CYCLES
Under some other assumptions about PRA …

Almost every large random (ABO- & PRA-) graph has an 
efficient allocation that requires exchanges of size at most 3 
with the following:

• X-X pairs are matched in 2- or 3-way exchanges with other X-
X pairs (so-called “self-demand”)

• B-A pairs are 2-matched with A-B pairs
• The leftovers of {A-B or B-A} are 3-matched with “good” {O-A, 

O-B} pairs and {O-B, O-A pairs}
• 3-matches with {AB-O, O-A, A-AB}
• All the remaining 2-matched as {O-X, X-O}
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VISUALLY …

28



PRICE OF FAIRNESS
Efficiency vs. fairness:

• Utilitarian objectives may favor certain classes at the expense 
of marginalizing others

• Fair objectives may sacrifice efficiency in the name of 
egalitarianism

Price of fairness: relative system efficiency loss under a fair 
allocation [Bertismas, Farias, Trichakis 2011]

[Caragiannis et al. 2009]

29



PRICE OF FAIRNESS 
IN KIDNEY EXCHANGE

• Price of fairness: relative loss of match efficiency due 
to fair utility function 

• Clearing problem: find a matching M* that maximizes 
utility function 

!∗ = argmax
)∈ℳ

,(!)

/01 ℳ,,3 = , !∗ − ,(!3∗)
,(!∗)
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[Dickerson et al. AAMAS-14]



V{L,H} : lowly-, highly-sensitized vertices
λ : fraction of pool that is lowly-sensitized
p{L,H} : prob. ABO-compatible is tissue-type incompatible
p = λpL + (1-λ)pH : average level of sensitization

“Most stringent” fairness rule:

Theorem

Assume p < 2/5, λ ≥ 1-p, and “reasonable” distribution of blood 
types.
Then, almost surely as nà ∞,

(And this is achieved using cycles of length at most 3.) 
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IN THEORY, THE PRICE OF 
FAIRNESS IS LOW
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More 
on 10/6!



PROBLEMS WITH THIS 
TYPE OF MODEL
Dense model [Saidman et al. 2006, etc.]

• Constant probability of edge existing

• Less useful in practice [Ashlagi et al. 2012+, Dickerson et al. 2014+]

Better?  Sparse model [Ashlagi et al. 2012]

• 1-λ fraction is highly-sensitized (pH = c/n)

• λ fraction is lowly-sensitized (pL > 0, constant)

But still:
• Random graph models tend to be “in the large”, no weights, no 

uncertainty, fairly homogeneous … so not perfect!
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A TASTE OF THE SPARSE MODEL …



MOVING BEYOND KIDNEYS: 
LIVERS
Similar matching problem (mathematically)

Right lobe is biggest but riskiest; exchange may reduce right 
lobe usage and increase transplants

[Sönmez 2014]

[Ergin, Sönmez, Ünver w.p. 2015]
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MOVING BEYOND KIDNEYS: 
MULTI-ORGAN EXCHANGE
Chains are great! [Anderson et al. 2015, Ashlagi et al. 2014, Rees et al. 2009]

Kidney transplants are “easy” and popular:

• Many altruistic donors
Liver transplants: higher mortality, morbidity:

• (Essentially) no altruistic donors
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SPARSE GRAPH, MANY 
ALTRUISTS
nK kidney pairs in graph DK; nL = γnK liver pairs in graph DL

Number of altruists t(nK)
Constant pKàL > 0 of kidney donor willing to give liver
Constant cycle cap z

Theorem

Assume t(nK) = βnK for some constant β>0.  Then, with probability 1 as nK
à ∞,

Any efficient matching on D = join(DK,DL) matches Ω(nK) 
more pairs than the aggregate of efficient matchings on 
DK and DL. Building on [Ashlagi et al. 2012] 37



INTUITION
Find a linear number of “good cycles” in DL that are length > z

• Good cycles = isolated path in highly-sensitized portion of pool and 
exactly one node in low portion

Extend chains from DK into the isolated paths (aka can’t be matched 
otherwise) in DL, of which there are linearly many

• Have to worry about pKàL, and compatibility between vertices
Show that a subset of the dotted edges below results in a linear-in-
number-of-altruists max matching

• à linear number of DK chains extended into DL
• à linear number of previously unmatched DL vertices matched
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SPARSE GRAPH, FEW 
ALTRUISTS
nK kidney pairs in graph DK; nL = γnK liver pairs in graph DL

Number of altruists t – no longer depends on nK!
λ is frac. lowly-sensitized
Constant cycle cap z

Theorem

Assume constant t.  Then there exists λ’ > 0 s.t. for all λ < λ’

Any efficient matching on D = join(DK,DL) matches Ω(nK) 
more pairs than the aggregate of efficient matchings on 
DK and DL.

With constant positive probability. Building on [Ashlagi et al. 2012] 39



INTUITION
For large enough λ (i.e., lots of sensitized patients), there exist 
pairs in DK that can’t be matched in short cycles, thus only in 
chains 

• Same deal with DL, except there are no chains
Connect a long chain (+altruist) in DK into an unmatchable long 
chain in DL, such that a linear number of DL pairs are now matched
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Fundamentally different matching problem
• Two donors needed

MOVING BEYOND KIDNEYS: 
LUNGS

[Date et al. 2005; 
Sönmez 2014]

(Compare to the single 
configuration for a “3-cycle” in 
kidney exchange.)

[Ergin, Sönmez, Ünver w.p. 2014]
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OTHER RECENT & ONGOING 
RESEARCH IN THIS SPACE
Dynamic matching theory with a kidney exchange flavor:
• Akbarpour et al., “Thickness and Information in Dynamic 

Matching Markets”
• Anderson et al., “A dynamic model of barter exchange”
• Ashlagi et al., “On matching and thickness in heterogeneous 

dynamic markets”
• Das et al., “Competing dynamic matching markets”
Mechanism design:
• Blum et al. “Opting in to optimal matchings”
Not “in the large” random graph models:
• Ding et al., “A non-asymptotic approach to analyzing kidney 

exchange graphs
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NEXT CLASS:
OPTIMAL BATCH CLEARING OF ORGAN 

EXCHANGES
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