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THIS CLASS:
MANAGING SHORT-TERM 

UNCERTAINTY IN EXCHANGES
(WITH SOME FAIRNESS)
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THE CLEARING PROBLEM

The clearing problem is to find the “best” disjoint set of cycles 
of length at most L, and chains (maybe with a cap K)

• Last class: only considered static deterministic matching
• This class: matching under short-term uncertainty
• Next class: general long-term dynamic matching over time
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MATCHED ≠ TRANSPLANTED
Only around 10% of UNOS matches resulted in an actual 
transplant

• Similarly low % in other exchanges [ATC 2013]

Many reasons for this.  How to handle?

One way: encode probability of transplantation rather than 
just feasibility

• for individuals, cycles, chains, and full matchings
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FAILURE-AWARE MODEL
Compatibility graph G

• Edge (vi, vj) if vi’s donor can donate to vj’s patient 
• Weight we on each edge e

Success probability qe for each edge e

Discounted utility of cycle c
u(c) = ∑we � ∏qe

Value of successful cycle Probability of success
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FAILURE-AWARE MODEL
Discounted utility of a k-chain c

Cannot simply “reweight by failure probability”

Exactly first i transplants Chain executes in entirety
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A 1 2 3 4
q1 q2 q3 q4

1q1(1-q2)… + 2q1q2(1-q3)… + 3q1q2q3(1-q4)… + 4q1q2q3q4



OUR PROBLEM
Discounted clearing problem is to find matching M* with 
highest discounted utility
• Utility of a match M:     u(M) = ∑ u(c)

1 2

3

Maximum cardinality Maximum expected transplants
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“IN THE LARGE”
G(n, t(n), p): random graph with

• n patient-donor pairs
• t(n) altruistic donors
• Probability Θ(1/n) of incoming edges

Constant transplant success probability q
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For all q∈ (0,1) and α, β > 0, given a large G(n, αn, β/n), w.h.p. there 
exists some matching M’ s.t. for every maximum cardinality matching 
M,

uq(M’) ≥ uq(M) + Ω(n)
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BRIEF INTUITION: 
COUNTING Y-GADGETS

For every structure X of constant size, w.h.p. can find Ω(n) structures 
isomorphic to X and isolated from the rest of the graph
Label them (alt vs. pair): flip weighted coins, constant fraction are 
labeled correctly à constant × Ω(n) = Ω(n)
Direct the edges: flip 50/50 coins, constant fraction are entirely 
directed correctly à constant × Ω(n) = Ω(n)
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In theory, we’re losing out on 
expected actual transplants by 
maximizing match cardinality.

… What about in practice?
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UNOS
2010-2014
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SOLVING THIS NEW 
PROBLEM
Real-world kidney exchanges are still small

• Mostly around 300 donors and 300 patients

Undiscounted clearing problem is NP-hard when cycle/chain 
cap L ≥ 3 (reduction from 3D-matching last class)

• Special case of our problem
• (Set success rate q = 1 for all edges)
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The restricted discounted maximum cycle cover 
problem is NP-hard. 
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WE CAN’T USE THE 
CURRENT SOLVER
Branch-and-bound IP solvers use upper and lower bounds to 
prune subtrees during search
Upper bound: cycle cover with no length cap
• (Last class: PTIME through max weighted perfect matching)

But now it is better to use shorter cycles instead of longer 
cycles to cover the same set of vertices …
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WE CAN’T USE THE  
CURRENT SOLVER

Reduce from 3D-matching, like last class.  Intuition:

• 3-cycles are better than L-cycles, for L>3

• Want the top (blue) vertices matched in 3-cycles, not L-cycles

• We showed this happens iff there is a 3D-matching
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The unrestricted discounted maximum cycle 
cover problem is NP-hard. 
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WE CAN USE PARTS OF 
THE CURRENT SOLVER

For all 2-cyles between u and v in the original graph, set 
corresponding undirected edge weight in translated graph to:

• we’ = q(u,v) � q(v,u) � ( w(u,v) + w(v,u) )
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B&B 
lower 
bound

The restricted discounted maximum cycle cover 
problem is solvable in PTIME for L=2.
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PRICING: CONSIDERING ONLY 
“GOOD” CHAINS

Donation to 
waitlist

Discounted utility of 
current chain

Optimistic future value 
of infinite extension

Pessimistic sum of LP 
dual values in model

Given a chain c, any extension c’ will not be needed in an optimal 
solution if the infinite extension has non-positive value
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SCALABILITY 
EXPERIMENTS
|V| CPLEX Ours Ours without chain curtailing

10 127 / 128 128 / 128 128 / 128 
25 125 / 128 128 / 128 128 / 128 
50 105 / 128 128 / 128 125 / 128 
75 91 / 128 126 / 128 123 / 128 

100 1 / 128 121 / 128 121 / 128 
150 114 / 128 95 / 128 
200 113 / 128 76 / 128 
250 94 / 128 48 / 128 
500 107 / 128 1 / 128 
700 115 / 128 
900 38 / 128 

1000

• Runtime limited to 60 minutes; each instance given 8GB of RAM.
• |V| represents #patient-donor pairs; additionally, 0.1|V| altruistic donors are 

present. 17



In theory and practice, we’re helping 
the global bottom line by considering 
post-match failure …

… But can this hurt some individuals?
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SENSITIZATION AT UNOS

Highly-sensitized patients: unlikely to be compatible 
with a random donor
• Deceased donor waitlist: 

15%-20%
• Kidney exchanges: much 

higher (60%+)

“Hard to match” patients

“Easy to match” patients
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RECALL:
PRICE OF FAIRNESS
Efficiency vs. fairness:
• Utilitarian objectives may favor certain classes at 
the expense of marginalizing others

• Fair objectives may sacrifice efficiency in the name 
of egalitarianism

Price of fairness: relative system efficiency loss 
under a fair allocation [Bertismas, Farias, Trichakis 2011]

[Caragiannis et al. 2009]
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PRICE OF FAIRNESS 
IN KIDNEY EXCHANGE

Want a matching  that maximizes
utility function 

Price of fairness: relative loss of match
efficiency due to fair utility function : 

!:ℳ → ℝ
&∗ = argmax

.∈ℳ
!(&)

234 ℳ,!6 = ! &∗ − !(&6∗)
!(&∗)

&∗

!6
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FROM THEORY TO PRACTICE
Last class, we saw that the price of fairness is low in theory

Fairness criterion: extremely strict.
Theoretical assumptions (standard):
• Big, dense graphs (“nà ∞”)

• Cycles (no chains)

• No post-match failures

• Simplified patient-donor features

What about the price of fairness in practice?

!"# ℳ, &'≻) ≤ +2 33
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TOWARD USABLE 
FAIRNESS RULES
In healthcare, important to work within (or near to) 
the constraints of the fielded system
• [Bertsimas, Farias, Trichakis 2013]

• Experience working with UNOS

We now present two (simple, intuitive) rules:
• Lexicographic: strict ordering over vertex types

• Weighted: implementation of “priority points”
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LEXICOGRAPHIC FAIRNESS

Matching-wide constraint:
• Present-day branch-and-price IP solvers rely on an 
“easy” way to solve the pricing problem

• Lexicographic constraints à
pricing problem requires an IP solve, too!

Strong guarantee on match composition …
• … but harder to predict effect on economic efficiency

Find the best match that includes at least α
fraction of highly-sensitized patients
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WEIGHTED FAIRNESS

Re-weighting is a preprocess à
works with all present-day exchange solvers

Difficult to find a “good” β?
• Empirical exploration helps strike a balance

Value matching a highly-sensitized patient at 
(1+β) that of a lowly-sensitized patient, β>0

25



THEORY VS. “PRACTICE”
LEXICOGRAPHIC FAIRNESS
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PRICE OF FAIRNESS: 
GENERATED DATA

Average (st.dev.) % loss in efficiency for three families of random 
graphs, under the strict lexicographic rule.

Good: aligns with the theory 

Bad: standard generated models aren’t realistic

Size Saidman (US) Saidman (UNOS) Heterogeneous
10 0.24% (1.98%) 0.00% (0.00%) 0.98% (5.27%)  
25 0.58% (1.90%) 0.19% (1.75%) 0.00% (0.00%)  
50 1.18% (2.34%) 1.96% (6.69%) 0.00% (0.00%)  

100 1.46% (1.80%) 1.66% (3.64%) 0.00% (0.00%)  
150 1.20% (1.86%) 2.04% (2.51%) 0.00% (0.00%)  
200 1.43% (2.08%) 1.55% (1.79%) 0.00% (0.00%)  
250 0.80% (1.24%) 1.86% (1.63%) 0.00% (0.00%)  
500 0.72% (0.74%) 1.67% (0.82%) 0.00% (0.00%)  
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UNOS RUNS
LEXICOGRAPHIC FAIRNESS, VARYING FAILURE RATES
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UNOS RUNS
WEIGHTED FAIRNESS, VARYING FAILURE RATES
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CONTRADICTORY GOALS
Earlier, we saw failure-aware matching results in tremendous 
gains in #expected transplants 
Gain comes at a price – may further marginalize hard-to-
match patients because:

• Highly-sensitized patients tend to be matched in chains
• Highly-sensitized patients may have higher failure rates (in 

APD data, not in UNOS data)
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UNOS runs, weighted fairness, constant probability of failure (x-axis), 
increase in expected transplants over deterministic matching (y-axis)
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Can we be more proactive in this 
balancing act?
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PRE-MATCH EDGE TESTING
Idea: perform a small amount of costly testing before a match 
run to test for (non)existence of edges
• E.g., more extensive medical testing, donor interviews, 

surgeon interviews, …

Cast as a stochastic matching (or set packing) problem:

Given a graph G(V,E), choose subset of edges S such that:

|M(S)| ≥ (1-ε) |M(E)| 

Need: “sparse” S, where every vertex has O(1) incident tested edges
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GENERAL THEORETICAL 
RESULTS

Stochastic matching: 
(1-ε) approximation with Oε(1) queries per vertex, in Oε(1) rounds

Stochastic k-set packing: 
(2/k – ε) approximation with Oε(1) queries per vertex, in Oε(1) rounds

Adaptive: select one edge per vertex per round, test, repeat

Non-adaptive: select O(1) edges per vertex, test all at once

Stochastic matching: 
(0.5-ε) approximation with Oε(1) queries per vertex, in 1 round

Stochastic k-set packing: 
(2/k – ε)2 approximation with Oε(1) queries per vertex, in 1 round
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ADAPTIVE ALGORITHM

r Base graph Matching picked Result of queries

1:

2:

Input Graph
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For R rounds, do:
1. Pick a max-cardinality matching M in graph G, 

minus already-queried edges that do not exist
2. Query all edges in M



INTUITION FOR 
ADAPTIVE ALGORITHM
If at any round r, the best solution on edges queried so far is 
small relative to omniscient …

• ... then current structrure admits large number of unqueried, 
disjoint augmenting structures

• For k=2, aka normal matching, simply augmenting paths
Augmenting structures might not exist, but can query in 
parallel in a single round

• Structures are constant size à exist with constant probability
• Structures are disjoint à queries are independent
• à Close a constant gap per round
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UNOS DATA
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Even 1 or 2 extra tests would result in a huge lift

At p=0.5, one edge test 
per vertex à +21% OPT
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NEXT CLASS:
DYNAMIC OPTIMIZATION
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