
Solving the Station
R

epacking Problem

A
lexandre Fréchette, N

eil N
ew

m
an, K

evin Leyton-B
row

n

A
genda

●
B

ackground
●

Problem
●

N
ovel A

pproach
●

Experim
ental R

esults

B
ackground

A
 B

rief H
istory

Spectrum
 rights have historically been a m

ess. Licenses w
ere given aw

ay after
public or private hearings.

Then, the FC
C

 pioneered selling spectrum
 through auctions.

B
roadcast TV

 view
ership (dem

and) has declined over the years.

M
obile dem

and for spectrum
 has increased.

It w
ould be great to “clear” TV

 spectrum
 for m

obile use.

Spectrum
 Incentive A

uction

G
oal: Free up contiguous spectrum

 for m
obile use

Let’s buy back the U
H

F radio spectrum
 and then sell it to the m

obile com
panies.

Stations can…
1.

Take our m
oney and close up shop

2.
Take a portion of our offer to voluntarily m

ove dow
n the spectrum

3.
N

ot participate but m
ay be forced to m

ove dow
n

This w
ill be through a reverse auction follow

ed by a forw
ard auction.

Process cancelled if governm
ent can’t break even or m

ake m
oney.

R
everse A

uction

M
ultiple round descending price countdow

n auction.

Initial offer depends on local com
petition, national clearing target, etc. Prices

should m
otivate stations to sell.

Stations are considered in a round-robin style during the auction.

Price/offer for a given station w
ill decrease each round assum

ing they can be
“repacked” at a low

er frequency.

Forw
ard A

uction

Step 1: Sell spectrum
 to m

obile com
panies

Step 2: Profit

Problem
 D

efinition

Problem

W
e need to be able to determ

ine if it is feasible to m
ove (repack) a channel during

the reverse auction.

Stations can only use certain channels.

Stations cannot interfere w
ith one another.

W
e w

ill be given hundreds of thousands of repacking problem
s throughout the

auction.

This is a N
P-C

om
plete problem

 w
e w

ill need to solve quickly during the auction.

Standard solutions like M
IP are too slow

.

C
onsiderations
W

hat is involved in this
repacking problem

?

D
om

ain assignm
ents

Interference constraints

Perform
ance

D
om

ain C
onstraints

N
ot all stations can use all channels.

A
 dom

ain file is provided w
hich lists the possible channels each station could be

assigned in the repacking process.

Interference C
onstraints

W
e m

ust m
ake sure repacking does not introduce interference.

C
o-channel constraints: 2+ stations cannot be assigned the sam

e channel

A
djacent channel constraints: Specific stations cannot be assigned adjacent channels

A
n interference file is provided w

hich enum
erate these constraints.

Interference G
raph

The undirected graph of interference
constraints.

R
oughly 20

0
0

 channels.

B
ecause of adjacency constraints, w

e
cannot solve as a graph coloring
problem

.

Perform
ance

W
e need to solve these repacking problem

s quickly…

So auction designers and econom
ists can experim

ent and study auction behavior.

If w
e can’t solve a particular station in tim

e w
e cannot low

er the bid w
hich could

leave m
oney on the table.

The auction is expected to have several rounds per day and take w
eeks overall.

N
ovel A

pproach

A
pproach: SA

TFC
 2.0

SA
T encoding and SA

T solvers

A
lgorithm

 C
onfiguration using SM

A
C

A
lgorithm

 Portfolio

Increm
ental Station R

epacking

Problem
 Sim

plification

H
ydra technique (A

C
 + A

P)

C
ontainm

ent C
ache

SA
T Encoding

Encode as a propositional
satisfiability problem

Encode as Satisfiability Problem

R
epacking is w

ell suited as a feasibility problem
 w

ith com
binatorial constraints.

Leverage open-source, high perform
ance solvers.

S = {all stations}

C
 = {all channels}

D
 = {dom

ain allow
able station/channel m

appings}

I = {invalid station/channel m
appings due to co-channel or co-adjacency}

B
asic form

 look like

SA
T Encoding C

lauses

1. Each station is assigned at least one channel

2. Each station is assigned at m
ost one channel

3. Interference constraints are respected

https://sim
ons.berkeley.edu/talks/kevin-leyton-brow

n-2015-11-19

SA
T Solvers

O
utperform

ed initial m
ixed

integer program
 solvers

(C
PLEX

, G
urobi).

18 SA
T solvers initially

evaluated, none w
ere able to

solve all problem
s in target

tim
e of 6

0
 seconds.

M
ost problem

s are actually
solvable (~9

9
%

) but not before
tim

eout.

A
lgorithm

C

onfiguration
U

se m
achine learning to find

optim
al algorithm

 param
eters

A
lgorithm

 C
onfiguration

Som
e solvers like C

LA
SP have lots of param

eters allow
ing for fine-tuning.

W
e can view

 this as an optim
ization problem

 and use an autom
ated approach to

find the best param
eters for our problem

.

Leyton-B
row

n’s research group previously developed softw
are for algorithm

configuration: Sequential M

odel-based A
lgorithm

 C
onfiguration (SM

A
C

)

SM
A

C

Step 1: C
onfigure SM

A
C

 w
ith the solver and

param
eters.

Step 2: C
onfigure run period (ex: one day) for

SM
A

C
 to find best param

eter values.

SM
A

C
 w

ill build a response surface starting
w

ith random
(ish) initial param

eters and hone
in on the best values for a given problem

.

(uses random
 forest regression trees)

Sam
ple A

lgorithm
 C

onfiguration R
esults

A
lgorithm

Portfolio

#
team

w
ork

A
lgorithm

 Portfolio

R
arely can w

e find a single solver to resolve all problem
s for an N

P-H
ard problem

.

Instead, select a set of com
plem

entary solvers.

A
ttack the problem

 in parallel w
ith the solvers.

This is also an active area of study for Leyton-B
row

n’s research group.

Increm
ental

R
epacking

leveraging current assignm
ents

Local A
ugm

enting

Starting A
ssignm

ent for Local
Search Solvers

Local A
ugm

enting

W
hen checking feasibility of repacking a station, only consider the station and its

im
m

ediate neighbors.

H
old all stations outside of this neighborhood fixed.

If w
e can quickly determ

ine the local repack is feasible than w
e are done.

A
 m

odified D
C

C
A

-preS
A

T im
proved over D

C
C

A
 by solving 78.5

%
 of test instances

in .1 seconds before stagnating.

Starting A
ssignm

ent for Local Search Solvers

“Local search solvers such as D
C

C
A

 w
ork by searching a space of com

plete
assignm

ents and seeking a feasible point, typically follow
ing gradients to m

inim
ize

an objective function that counts violated constraints, and periodically
random

izing.”

Sim
ilar to Local A

ugm
enting, w

e can start w
ith current assignm

ents for a repack
and then give s

+ a random
 channel to start w

ith.

This approach does not constrain the problem
 to the neighborhood of s

+.

A
 m

odified D
C

C
A

+ im
proved over D

C
C

A
 by solving 85

.4%
 of the sam

ple problem
s

before the tim
eout.

Problem

Sim
plification

M
aking sm

aller problem
s out of

bigger problem
s

G
raph decom

position

Station R
em

oval

G
raph D

ecom
position

A
 set of related stations w

ill usually results in a disconnected subgraph of
interference constraints.

W
e can often break a problem

 dow
n into m

ultiple subgraphs / com
ponents.

Each subgraph is a com
putationally easier problem

s to solve.

If w
e can prove one of the sm

aller problem
s is infeasible then the w

hole problem
 is

infeasible.

The largest com
ponent is often significantly sm

aller than the original problem
.

U
nderconstrained Station R

em
oval

There are som
e stations that can alw

ays be repacked due to less local com
petition

for channels.

R
em

oving these stations from
 the original feasibility problem

 m
akes it easier to

com
pute.

This also im
proves graph decom

position.

H
ydra

Iteratively build our portfolio:
A

lgorithm
 C

onfiguration +
A

lgorithm
 Portfolio

"W
hich solver w

ill offer the greatest
m

arginal contribution to the existing
portfolio?"

H
ydra

Problem
 sim

plification low
ers correlation betw

een solvers m
aking them

 “m
ore

different”.

SA
Tzilla is an algorithm

 portfolio builder that iteratively adds a solver/algorithm
 that

adds the m
ost value.

This is, of course, an active area of study by Leyton-B
row

n’s research group and
their SA

Tzilla softw
are has w

on num
erous SA

T com
petitions.

http://w
w

w
.cs.ubc.ca/labs/beta/Projects/SA

Tzilla/

C
ontainm

ent
C

aching
Feasible cache

Infeasible cache

Fast cache queries

Subsets and Supersets

W
e know

 all of the constraints ahead of tim
e.

W
e have lots of tim

e to prepare.

B
ut pre-cached problem

 solutions w
ere found to R

A
R

ELY
 be directly applicable for

new
 problem

s.

H
ow

ever…
 if a set S is packable, then every subset S

’ ⊆
 S is also packable (and w

e
have the packing)

Sim
ilarly, if set S is N

O
T packable, then every superset S

’ ⊇
 S is also N

O
T packable

W
e can build caches w

hich tell us w
ither one set contains another.

Let’s B
uild C

aches

W
e w

ill build feasible and infeasible caches for each problem
 w

e solve.

W
hen faced w

ith a new
 problem

 to repack station set S...

C
heck w

hether the feasible cache contains a superset of S. It’s feasible!

C
heck w

hether the infeasible cache contains a subset of S. It’s infeasible!

Else, sim
plify and decom

pose the problem
. C

heck to see if each com
ponent can

be found in the feasibility cache.

This becom
es a cache querying problem

.

C
ontains a full solution m

apping (if exists) for a given problem
 along w

ith the
problem

 instance and sim
plified com

ponents.

Indexed by a hash function.

N
ot useful to answ

er feasibility question directly - see secondary caches.

Prim
ary (traditional) C

aches

Secondary C
aches

C
ontain lists of station sets that correspond to entries in the prim

ary cache.

W
e use these for querying and then “hash” into the prim

ary cache w
hen needed.

Each station set is represented by a bit string {110
1..0

0
0

10
110

1} w
hich can be

interpreted as a large integer.

V
ery com

pact/efficient: “a cache of 20
0

,0
0

0
 entries, each consisting of 2,0

0
0

stations/bits, occupies only 5

0
 M

B
”

W
e can have ᭧ m

ultiple secondary caches (descending order by integer value) w
ith

different random
 bit orders to search over.

Superset C
ache Q

uerying

G
iven a query S, w

e perform
 binary search on each of the ᭧ secondary caches to

find the prim
ary cache index corresponding to S (if it is in the cache) or of the

sm
allest entry larger than S (if not in cache)

If w
e find S, that is a direct hit on a solution.

If w
e don’t find S, but w

e find a superset (larger entry), then w
e know

 the repack is
feasible as part of a larger feasible repack.

Testing show
ed query execution w

ithin an average tim
e of 30

 m
s on a cache of

nearly 20
0

,0
0

0
 entries.

C
ontainm

ent C
ache Evaluation

U
sed a 4 solver portfolio on all FC

C
 supplied instances for 24 hours.

Solvers used the cache for lookups as they also built it up.

A
fterw

ards, had a cache of 185
,75

0
 entries.

Largest problem
 in feasible cache had 1170

 stations w
hile sm

allest problem
 in

infeasible cache had 2 stations. (rem
em

ber superset vs subset lookups).

They built 5
 secondary caches each w

ith different bit orderings (᭧ = 5
).

W
hen view

ed as a “solver” it outperform
ed all other algorithm

s, solving 9
8.2%

 of
problem

s.

Experim
ental R

esults

R
esults

This research produced a 4 solver portfolio plus the containm
ent cache for

addressing the repacking problem
 nam

ed SA
TFC

 2.0
.

Solvers: D
C

C
A

-preSA
T, D

C
C

A
+, clasp-h1, and clasp-h2

In evaluation, this solution w
as able to solve 9

9
.0

%
 of test instances in under 0

.2
seconds, and 9

9
.6

%
 in under a m

inute.

Final results on test data

Q
uestions?

