Solving the Station
Repacking Problem

Alexandre Fréchette, Neil Newman, Kevin Leyton-Brown

Agenda

Background

Problem

Novel Approach
Experimental Results

A Brief History

Spectrum rights have historically been a mess. Licenses were given away after
public or private hearings.

Then, the FCC pioneered selling spectrum through auctions.
Broadcast TV viewership (demand) has declined over the years.
Mobile demand for spectrum has increased.

It would be great to “clear” TV spectrum for mobile use.

UNITED

STATES
FREQUENCY
ALLOCATIONS

THE RADIO SPECTRUM
[P) [) P—
B e, oo

Frovar il oy
[P S po———
[s i [2

S DEPARTMENT OF COMMERCE.
Nioad Tt mankstens o Lafurmation Adminncrstion
o Setrem \lanagerens

AANUARY 206

"n_. nmm m n _ | m_ | mﬂ..,“_" _m_:
“mm]

£ :“ m:.".uﬁ :::u:

7H

5120

540

RADIO ASTRONOMY

6140

70
30

o RADIO ASTRONOMY

4.6
8
752
54
76.0

88.0

MUBILE
1740

216.0

Spectrum Incentive Auction

Goal: Free up contiguous spectrum for mobile use
Let’s buy back the UHF radio spectrum and then sell it to the mobile companies.

Stations can...

1. Take our money and close up shop

2. Take a portion of our offer to voluntarily move down the spectrum
3. Not participate but may be forced to move down

This will be through a reverse auction followed by a forward auction.

Process cancelled if government can’t break even or make money.

Reverse Auction

Multiple round descending price countdown auction.

Initial offer depends on local competition, national clearing target, etc. Prices
should motivate stations to sell.

Stations are considered in a round-robin style during the auction.

Price/offer for a given station will decrease each round assuming they can be
“repacked” at a lower frequency.

Forward Auction

Step 1. Sell spectrum to mobile companies

Step 2: Profit

Problem

We need to be able to determine if it is feasible to move (repack) a channel during
the reverse auction.

Stations can only use certain channels.
Stations cannot interfere with one another.

We will be given hundreds of thousands of repacking problems throughout the
auction.

This is a NP-Complete problem we will need to solve quickly during the auction.

Standard solutions like MIP are too slow.

Domain assignments

OO—_m_Qm—\m.ﬁ_o—_m Interference constraints

What is involved in this Performance
repacking problem?

Domain Constraints

Not all stations can use all channels.

A domain file is provided which lists the possible channels each station could be
assigned in the repacking process.

Station ID Available Channels

| _

DOMAIN, 10001, 2, 3, 4, 5, 6, 19, 20, 21, 48, 49, 50, 51
DOMAIN, 10002, 2, 3, 4, 5,6, 7, 8, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40
DOMAIN, 10003, 2, 3, 4, 5,6, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 34, 35, 40, 41, 42, 43, 44, 45

Interference Constraints

We must make sure repacking does not introduce interference.
Co-channel constraints: 2+ stations cannot be assigned the same channel
Adjacent channel constraints: Specific stations cannot be assigned adjacent channels

An interference file is provided which enumerate these constraints.

Interference Type
Study
Band gtation

Limits —

Al _
CO, 2,4, 10036, 10057, 10066, 10118, 10282, 10345, 10438
ADJ+1, 2, 4, 10913, 10281, 10761, 10864
ADJ-1, 2, 4, 10442, 10037, 10675

Interfering Stations

Interference Graph

The undirected graph of interference <, /¢ 4 D Vo g 2 o BAF 4.
J:L,/w., 24 . .ﬁ / . i ,....,xw
constraints. 8 ke ,
Roughly 2000 channels. s
. . B i
Because of adjacency constraints, we ﬁ &£ Iy
!\-/w./.m . s

cannot solve as a graph coloring
problem.

Performance

We need to solve these repacking problems quickly...
So auction designers and economists can experiment and study auction behavior.

If we can’t solve a particular station in time we cannot lower the bid which could
leave money on the table.

The auction is expected to have several rounds per day and take weeks overall.

Approach: SATFC 2.0

SAT encoding and SAT solvers
Algorithm Configuration using SMAC
Algorithm Portfolio

Incremental Station Repacking
Problem Simplification

Hydra technique (AC + AP)

Containment Cache

SAT Encoding

Encode as a propositional
satisfiability problem

Encode as Satisfiability Problem

Repacking is well suited as a feasibility problem with combinatorial constraints.
Leverage open-source, high performance solvers.

S ={all stations}

C ={all channels}

D = {domain allowable station/channel mappings}

| = {invalid station/channel mappings due to co-channel or co-adjacency}

i . — — !
Basic form look like .&..mvo < nﬁm C

SAT Encoding Clauses
1. Each station is assigned at least one channel
Vaep(s) Ts,a Vs €5
2. Each station is assigned at most one channel
5.V Zs e Vs € S, Ve, #c € D(s)
3. Interference constraints are respected

—iigs W B o W4 (850], (8@)€ d

SAT Encoding

Xs c: the proposition that station s is assigned to channel ¢
— one such variable for every station s and channel ¢

Station s must broadcast on one of its allowable channels

— For every station s and set of allowable channels {c;, ..., ¢,,},
create a clause (X, V-V X)

Station s may broadcast on at most one of these channels

— For every pair of channels ¢; and ¢, allowed for station s,
create a clause Al_xm.nH \% Jxm.an

The repacking does not cause harmful interference

— For every interference rule stating that s; cannot broadcast on ¢,
while s, broadcasts on ¢, create a clause (—xs ¢, V —1Xs, ¢,)

Note: mostly 2-clauses
— good for unit propagation: implies clique constraints

SAT Solvers

Outperformed initial mixed
integer program solvers
(CPLEX, Gurobi).

18 SAT solvers initially
evaluated, none were able to
solve all problems in target
time of 60 seconds.

Most problems are actually
solvable (Y99%) but not before
timeout.

Fraction of Instances

1.0
—— DCCA
~— Minisat-HACK-999ED-CSSC
09 - Riss3g
~—— Solver43
~—Lingeling-mixed
~—— YalSAT
—— Clasp
== CPLEX
= = Gurobi
N SAT
0.6 N UNSAT
e TIMEOUT

0.8

0.2

0.1

0.0
10 10* 10° 10 10°
Runtime (s)

Algorithm
Configuration

Use machine learning to find
optimal algorithm parameters

Algorithm Configuration

Some solvers like CLASP have lots of parameters allowing for fine-tuning.

We can view this as an optimization problem and use an automated approach to
find the best parameters for our problem.

Leyton-Brown'’s research group previously developed software for algorithm
configuration: Sequential Model-based Algorithm Configuration (SMAC)

SMAC

Step 1. Configure SMAC with the solver and
parameters.

Step 2: Configure run period (ex: one day) for
SMAC to find best parameter values.

SMAC will build a response surface starting
with random(ish) initial parameters and hone
in on the best values for a given problem.

(uses random forest regression trees)

Computed by Wolfram |Alpha

Sample Algorithm Configuration Results

1.0
0.9
0.8
0.7

0.6

0.5

0.4

Fraction of Instances

0.3

0.2

——1DECA
—— Clasp
~—— Clasp-H2

0.1

0.0
10 10 10° 10" 10°
Runtime (s)

Algorithm
Portfolio

#teamwork

Algorithm Portfolio

Rarely can we find a single solver to resolve all problems for an NP-Hard problem.
Instead, select a set of complementary solvers.
Attack the problem in parallel with the solvers.

This is also an active area of study for Leyton-Brown’s research group.

Incremental
Repacking

leveraging current assignments

Local Augmenting

Starting Assignment for Local
Search Solvers

Local Augmenting

When checking feasibility of repacking a station, only consider the station and its
immediate neighbors.

Hold all stations outside of this neighborhood fixed.
If we can quickly determine the local repack is feasible than we are done.

A modified DCCA-preSAT improved over DCCA by solving 78.5% of test instances
in .1 seconds before stagnating.

Starting Assignment for Local Search Solvers

“Local search solvers such as DCCA work by searching a space of complete
assignments and seeking a feasible point, typically following gradients to minimize
an objective function that counts violated constraints, and periodically
randomizing.”

Similar to Local Augmenting, we can start with current assignments for a repack
and then give s” a random channel to start with.

This approach does not constrain the problem to the neighborhood of s.

A modified DCCA+ improved over DCCA by solving 85.4% of the sample problems
before the timeout.

Problem
m_ m —U__.—.._ﬁwm.ﬁ_hv: Graph decomposition

Station Removal

Making smaller problems out of
bigger problems

Graph Decomposition

A set of related stations will usually results in a disconnected subgraph of
interference constraints.

We can often break a problem down into multiple subgraphs / components.
Each subgraph is a computationally easier problems to solve.

If we can prove one of the smaller problems is infeasible then the whole problem is
infeasible.

The largest component is often significantly smaller than the original problem.

Underconstrained Station Removal

There are some stations that can always be repacked due to less local competition
for channels.

Removing these stations from the original feasibility problem makes it easier to
compute.

This also improves graph decomposition.

"Which solver will offer the greatest
I<Q —\m marginal contribution to the existing

portfolio?"

Iteratively build our portfolio:
Algorithm Configuration +
Algorithm Portfolio

Hydra

Problem simplification lowers correlation between solvers making them “more
different”.

SATzilla is an algorithm portfolio builder that iteratively adds a solver/algorithm that
adds the most value.

This is, of course, an active area of study by Leyton-Brown’s research group and
their SATzilla software has won numerous SAT competitions.

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/

OO—J._..m _ 3 3@3._.. Feasible cache
Om ﬁw j _ —_ @ Infeasible cache

Fast cache queries

Subsets and Supersets

We know all of the constraints ahead of time.
We have lots of time to prepare.

But pre-cached problem solutions were found to RARELY be directly applicable for
new problems.

However... if a set S is packable, then every subset S” & Sis also packable (and we
have the packing)

Similarly, if set S is NOT packable, then every superset S’ 2 S is also NOT packable

We can build caches which tell us wither one set contains another.

Let’s Build Caches

We will build feasible and infeasible caches for each problem we solve.
When faced with a new problem to repack station set S...

Check whether the feasible cache contains a superset of S. It’s feasible!
Check whether the infeasible cache contains a subset of S. It's infeasible!

Else, simplify and decompose the problem. Check to see if each component can
be found in the feasibility cache.

This becomes a cache querying problem.

Primary (traditional) Caches

Contains a full solution mapping (if exists) for a given problem along with the
problem instance and simplified components.

Indexed by a hash function.

Not useful to answer feasibility question directly - see secondary caches.

Secondary Caches

Contain lists of station sets that correspond to entries in the primary cache.
We use these for querying and then “hash” into the primary cache when needed.

Each station set is represented by a bit string {1101..000101101} which can be
interpreted as a large integer.

Very compact/efficient: “a cache of 200,000 entries, each consisting of 2,000
stations/bits, occupies only 50 MB”

We can have /multiple secondary caches (descending order by integer value) with
different random bit orders to search over.

Superset Cache Querying

Given a query S, we perform binary search on each of the /secondary caches to
find the primary cache index corresponding to S (if it is in the cache) or of the
smallest entry larger than S (if not in cache)

If we find S, that is a direct hit on a solution.

If we don’t find S, but we find a superset (larger entry), then we know the repack is
feasible as part of a larger feasible repack.

Testing showed query execution within an average time of 30 ms on a cache of
nearly 200,000 entries.

@‘ 0 1 1
L Jol _ 0 1 0
@ 0 1 1
000
‘@. 1 0 0
@'. 1 0

—
(o=
—_—

0

0

Get a superset of:

0 1 0

0 1 2 3 4

0

1

(18)

(30)

(26)

0 1 1 1 1

0 1 0 1 1

0 1 1 0 1
"\ [O TS (R

1 0 0 0 1

1 1 0 0 0

(3)

Figure 3: Containment caching example. Left: six elements of the power set ola:b.e.die} Center: a secondary cache defined by a
random ordering over the five elements, with each of the sets interpreted as a bit string and sorted in descending order. Right: the
result of querying the containment cache for supersets of {c, d}. The query (18) does not exist in the cache directly; the next
largest entry (21) is not a superset (i.e., 01001 does not bitwise logically imply 10101); the cache returns {a, ¢, d} (22).

Containment Cache Evaluation

Used a 4 solver portfolio on all FCC supplied instances for 24 hours.
Solvers used the cache for lookups as they also built it up.
Afterwards, had a cache of 185,750 entries.

Largest problem in feasible cache had 1170 stations while smallest problem in
infeasible cache had 2 stations. (remember superset vs subset lookups).

They built 5 secondary caches each with different bit orderings (/= 5).

When viewed as a “solver” it outperformed all other algorithms, solving 98.2% of
problems.

Time saved (s)

[
o = o

S L G R

» 5o o7 e wW.h o

W00 ' e e W
PV i, RN T 0

b e, & v e
o« W w
e
o At : 2he
B 0?‘.&~:\bz ‘_:
£ e "
o ®
@
[]
=
3
[=

"
e Q - g . . o
“ R e e s ot T

000'T

00T

" et et e » -

000'T

Results

This research produced a 4 solver portfolio plus the containment cache for
addressing the repacking problem named SATFC 2.0.

Solvers: DCCA-preSAT, DCCA+, clasp-h1, and clasp-h2

In evaluation, this solution was able to solve 99.0% of test instances in under 0.2
seconds, and 99.6% in under a minute.

Final results on test data

Fraction of Instances

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.0
107

....................
......

10°
Runtime (s)

SATFC 1.0
SATFC 2.0
DCCA+
Clasp-H2
Clasp-H1
Cache & DCCA-preSAT
DCCA-preSAT

Cache

SAT

UNSAT

TIMEOUT

