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HOMEWORK: SEND ME TOP 3 
PRESENTATION PREFERENCES!

I’LL POST THE SCHEDULE NEXT WEEK
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THIS CLASS:
SOCIAL CHOICE & 

MECHANISM DESIGN PRIMER

Thanks to: AGT book, Conitzer (VC), Parkes (DP), Procaccia (AP), Sandholm (TS) 3



SOCIAL CHOICE
A mathematical theory that focuses on aggregation of 
individuals’ preferences over alternatives, usually in an 
attempt to collectively choose amongst all alternatives.
• A single alternative (e.g., a president)

• A vector of alternatives or outcomes (e.g., allocation of money, 
goods, tasks, jobs, resources, etc)

Agents reveal their preferences to a center
A social choice function then:
• aggregates those preferences and picks outcome

Voting in elections, bidding on items on eBay, requesting a 
specific paper presentation in CMSC828M, …
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FORMAL MODEL OF VOTING
Set of voters N and a set of alternatives A
Each voter ranks the alternatives
• Full ranking
• Partial ranking (e.g., US presidential election)
A preference profile is the set of all voters’ rankings
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1 2 3 4
a b a c
b a b a
c c c b



VOTING RULES
A voting rule is a function that maps preference profiles to 
alternatives
Many different voting rules – we’ll discuss more in Nov.
Plurality: each voter’s top-ranked alternative gets one point, 
the alternative with the most points wins

a: 2 points; b: 1 point; c: 1 point  à a wins
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1 2 3 4
a b a c
b a b a
c c c b

??????????



SINGLE 
TRANSFERABLE VOTE
Wasted votes: any vote not cast for a winning alternative
• Plurality wastes many votes (US two-party system …)
• Reducing wasted votes is pragmatic (increases voter 

participation if they feel like votes matter) and more fair
Single transferable vote (STV):
• Given m alternatives, runs m-1 rounds
• Each round, alternative with fewest plurality votes is eliminated
• Winner is the last remaining alternative
Ireland, Australia, New Zealand, a few other countries use 
STV (and coincidentally have more effective “third” parties…)
• You might hear this called “instant run-off voting”
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STV EXAMPLE

8AP

1 2 3 4 5
a a b b c
b b a a d
c c d d b
d d c c a

Starting preference 
profile:

1 2 3 4 5
a a b b c
b b a a b
c c c c a

Round 1, d has 
no plurality votes

1 2 3 4 5
a a b b b
b b a a a

Round 2, c has 1 
plurality vote

1 2 3 4 5
b b b b b

Round 3, a has 
2 plurality votes



MANIPULATION: 
AGENDA PARADOX
Binary protocol (majority rule), aka “cup”
Three types of agents:

x

x

y

yz z

x

x y y

z

z x xy

y z

z

Preference profile:
1. x > z > y (35%)  
2. y > x > z (33%)
3. z > y > x (32%)

TS

Power of agenda setter (e.g., chairman)

Under plurality rule, x wins
Under STV rule, y wins
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HOW SHOULD WE 
DESIGN VOTING RULES?
Take an axiomatic approach!
Majority consistency:
• If a majority of people vote for x as their top alternative, then x

should win the election

Is plurality majority consistent?
• Yes

Is STV majority consistent?
• No

Is cup majority consistent?
• No
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HOW SHOULD WE 
DESIGN VOTING RULES?
Given a preference profile, an alternative is a Condorcet 
winner if it beats all other alternatives in pairwise elections
• Wins plurality vote against any candidate in two-party election

Doesn’t always exist!  Condorcet Paradox:

x > y (2-1); y > z (2-1); z > x (2-1)     à x > y > z > x

Condorcet consistency: chooses Condorcet winner if it 
exists
• Stronger or weaker than majority consistency …? 11

1 2 3
x z y
y x z
z y x



HOW SHOULD WE 
DESIGN VOTING RULES?
1. Strategyproof: voters cannot benefit from lying.
2. Is it computationally tractable to determine winner?
3. Unanimous: if all voters have the same preference profile, 

then the aggregate ranking equals that.
4. (Non-)dictatorial: is there a voter who always gets her 

preferred alternative?
5. Independence of irrelevant alternatives (IIA): social 

preference between any alternatives a and b only 
depends on the voters’ preferences between a and b.

6. Onto: any alternative can win
Gibbard-Satterthwaite (1970s): if |A| > 3, then any voting rule 
that is strategyproof and onto is a dictatorship. 
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COMPUTATIONAL 
SOCIAL CHOICE
There are many strong impossibility results like G-S
• We will discuss more of them (e.g., G-S, Arrow’s Theorem) 

during the voting theory lectures in a month and a half

Computational social choice creates “well-designed” 
implementations of social choice functions, with an eye 
toward:
• Computational tractability of the winner determination problem

• Communication complexity of preference elicitation

• Designing the mechanism to elicit preferences truthfully

Interactions between these can lead to positive theoretical 
results and practical circumventions of impossibility results.
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MECHANISM DESIGN: MODEL
Before: we were given preference profiles
Reality: agents reveal their (private) preferences
• Won’t be truthful unless it’s in their individual interest; but
• We want some globally good outcome
Formally:
• Center’s job is to pick from a set of outcomes O
• Agent i draws a private type θi from Θi, a set of possible types
• Agent i has a public valuation function vi : Θi xOà Â

• Center has public objective function g : Θ x Oà Â

• Social welfare max aka efficiency, maximize g = Σi vi(θi, o)
• Possibly plus/minus monetary payments 
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MECHANISM DESIGN 
WITHOUT MONEY
A (direct) deterministic mechanism without payments o maps 
Θ à O
A (direct) randomized mechanism without payments o maps 
Θ à Δ(O), the set of all probability distributions over O
Any mechanism o induces a Bayesian game, Game(o)
A mechanism is said to implement a social choice function f
if, for every input (e.g., preference profile), there is a Nash 
equilibrium for Game(o) where the outcome is the same as f
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PICTORIALLY …
Agents draw private types θ from Θ
If those types were known, an outcome f(θ) would be chosen
Instead, agents send messages M (e.g., report their type as θ’, 
or bid if we have money) to the mechanism
Goal: design a mechanism whose Game induces a Nash 
equilibrium where the outcome equals f(θ)
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O
f(θ)θ

Θ

M, Game

NE(M, Game, θ)



A (SILLY) MECHANISM THAT DOES 
NOT IMPLEMENT WELFARE MAX
2 agents, 1 item
Each agent draws a private valuation for that item
Social welfare maximizing outcome: agent with greatest 
private valuation receives the item.
Mechanism:
• Agents send a message of {1, 2, …, 10}
• Item is given to the agent who sends the lowest message; if 

both send the same message, agent i = 1 gets the item
Equilibrium behavior:        ??????????
• Always send the lowest message (1)
• Outcome: agent i = 1 gets item, even if i = 2 values it more
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MECHANISM DESIGN 
WITH MONEY
We will assume that an agent’s utility for 
• her type being θi,

• outcome o being chosen, 

• and having to pay πi,

can be written as vi(θi, o) - πi

Such utility functions are called quasilinear
Then, (direct) deterministic and randomized mechanisms 
with payments additionally specify, for each agent i, a 
payment function πi : Θà Â
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VICKREY’S SECOND PRICE 
AUCTION ISN’T MANIPULABLE
(Sealed) bid on single item, highest bidder wins & pays second-highest bid price

190

1

True value θi

Bid θi’ > θi and win:
• Second-highest bid θj’ > θi ?

• Payment is θj’, pay more than valuation!
• Second-highest bid θj’ < θi ?

• Payment from bidding truthfully is the same
Bid θi’ > θi and lose: same outcome as truthful bidding

Bid θi’ < θi and win: same outcome as truthful bidding
Bid θi’ < θi and lose:
• Winning bid θj’ > θi ?

• Wouldn’t have won by bidding truthfully, either
• Winning bid θj’ < θi ?

• Bidding truthfully would’ve given positive utility

Bid value θi’

Bid value θi’

Other bid θj’



THE CLARKE (AKA VCG) 
MECHANISM
The Clarke mechanism chooses some outcome o that 
maximizes Σi vi(θi’, o)
To determine the payment that agent j must make:
• Pretend j does not exist, and choose o-j that maximizes Σi≠j vi(θi’, o-j)

• j pays Σi≠j vi(θi’, o-j) - Σi≠j vi(θi’, o) =
= Σi≠j ( vi(θi’, o-j) - vi(θi’, o) )

We say that each agent pays the externality that she imposes 
on the other agents
• Agent i’s externality: (social welfare of others if i were absent) -

(social welfare of others when i is present)

(VCG = Vickrey, Clarke, Groves)
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(STOPPED AROUND 
HERE ON FEB 8)
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PICKING UP FROM 
LAST CLASS …
Agents draw private types θ from Θ
If those types were known, an outcome f(θ) would be chosen
Instead, agents send messages M (e.g., report their type as θ’, 
or bid if we have money) to the mechanism
Goal: design a mechanism whose Game induces a Nash 
equilibrium where the outcome equals f(θ)
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O
f(θ)θ

Θ

M, Game

NE(M, Game, θ)



INCENTIVE COMPATIBILITY
Incentive compatibility: there is never an incentive to lie about 
one’s type

A mechanism is dominant-strategies incentive compatible (aka 
strategyproof) if for any i, for any type vector θ1, θ2, …, θi, …, θn, 
and for any alternative type θi’, we have

vi(θi, o(θ1, θ2, …, θi, …, θn)) - πi(θ1, θ2, …, θi, …, θn) ≥
vi(θi, o(θ1, θ2, …, θi’, …, θn)) - πi(θ1, θ2, …, θi’, …, θn)

A mechanism is Bayes-Nash equilibrium (BNE) incentive 
compatible if telling the truth is a BNE, that is, for any i, for any 
types θi, θi’, 

Σθ-i P(θ-i) [vi(θi, o(θ1, θ2, …, θi, …, θn)) - πi(θ1, θ2, …, θi, …, θn)] ≥
Σθ-i P(θ-i) [vi(θi, o(θ1, θ2, …, θi’, …, θn)) - πi(θ1, θ2, …, θi’, …, θn)]
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VCG IS STRATEGYPROOF
Total utility for agent j is 

vj(θj, o) - Σi≠j ( vi(θi’, o-j) - vi(θi’, o) )
= vj(θj, o) + Σi≠j vi(θi’, o) - Σi≠j vi(θi’, o-j) 

But agent j cannot affect the choice of o-j

à j can focus on maximizing vj(θj, o) + Σi≠j vi(θi’, o)
But mechanism chooses o to maximize Σi vi(θi’, o)
Hence, if θj’ = θj, j’s utility will be maximized!

Extension of idea: add any term to agent j’s payment that 
does not depend on j’s reported type
• This is the family of Groves mechanisms

VC 24



INDIVIDUAL RATIONALITY
A selfish center: “All agents must give me all their money.” –
but the agents would simply not participate
• This mechanism is not individually rational
A mechanism is ex-post individually rational if for any i, for any 
known type vector θ1, θ2, …, θi, …, θn, we have

vi(θi, o(θ1, θ2, …, θi, …, θn)) - πi(θ1, θ2, …, θi, …, θn) ≥ 0

A mechanism is ex-interim individually rational if for any i, for 
any type θi, 

Σθ-i P(θ-i) [vi(θi, o(θ1, θ2, …, θi, …, θn)) - πi(θ1, θ2, …, θi, …, θn)] ≥ 0

Is the Clarke mechanism individually rational?
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WHY ONLY TRUTHFUL DIRECT-
REVELATION MECHANISMS? 
Bob has an incredibly complicated mechanism in which 
agents do not report types, but do all sorts of other strange 
things
• Bob: “In my mechanism, first agents 1 and 2 play a round of 

rock-paper-scissors. If agent 1 wins, she gets to choose the 
outcome. Otherwise, agents 2, 3 and 4 vote over the other 
outcomes using the STV voting rule.  If there is a tie, everyone 
pays $100, and …”

Bob: “The equilibria of my mechanism produce better results 
than any truthful direct revelation mechanism.”
• Could Bob be right?
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THE REVELATION PRINCIPLE
For any (complex, strange) mechanism that produces certain 
outcomes under strategic behavior (dominant strategies, 
BNE)…
… there exists a {dominant-strategies, BNE} incentive 
compatible direct-revelation mechanism that produces the 
same outcomes!

27

mechanism outcome
actions

P1

P2

P3

types

new mechanism
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REVELATION PRINCIPLE 
IN PRACTICE

“Only direct mechanisms needed”
• But: strategy formulator might be complex

• Complex to determine and/or execute best-response strategy
• Computational burden is pushed on the center (i.e., assumed 

away)
• Thus the revelation principle might not hold in practice if these 

computational problems are hard
• This problem traditionally ignored in game theory

• But: even if the indirect mechanism has a unique equilibrium, 
the direct mechanism can have additional bad equilibria
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REVELATION PRINCIPLE 
AS AN ANALYSIS TOOL

Best direct mechanism gives tight upper bound on 
how well any indirect mechanism can do
• Space of direct mechanisms is smaller than that of 
indirect ones

• One can analyze all direct mechanisms & pick best one
• Thus one can know when one has designed an optimal 
indirect mechanism (when it is as good as the best direct 
one)
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COMPUTATIONAL ISSUES 
IN MECHANISM DESIGN 
Algorithmic mechanism design
• Sometimes standard mechanisms are too hard to execute computationally 

(e.g., Clarke requires computing optimal outcome)
• Try to find mechanisms that are easy to execute computationally (and nice in 

other ways), together with algorithms for executing them
Automated mechanism design
• Given the specific setting (agents, outcomes, types, priors over types, …) and 

the objective, have a computer solve for the best mechanism for this particular 
setting

When agents have computational limitations, they will not 
necessarily play in a game-theoretically optimal way
• Revelation principle can collapse; need to look at nontruthful mechanisms
Many other things (computing the outcomes in a distributed 
manner; what if the agents come in over time (online setting); 
…) – many good project ideas here J.

VC, AGT 



RUNNING EXAMPLE: MECHANISM 
DESIGN FOR KIDNEY EXCHANGE
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THE PLAYERS AND 
THEIR INCENTIVES
Clearinghouse cares about global welfare:

• How many patients received kidneys (over time)?

Transplant centers care about their individual welfare:
• How many of my own patients received kidneys?

Patient-donor pairs care about their individual welfare:
• Did I receive a kidney?
• (Most work considers just clearinghouse and centers)
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PRIVATE VS GLOBAL 
MATCHING
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MODELING THE 
PROBLEM
What is the type of an agent?
What is the utility function for an agent?
What would it mean for a mechanism to be:
• Strategyproof
• Individually rational
• Efficient
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KNOWN RESULTS
Theory [Roth&Ashlagi 14, Ashlagi et al. 15, Toulis&Parkes 15]:
• Can’t have a strategy-proof and efficient mechanism
• Can get “close” by relaxing some efficiency requirements
• Even for the undirected (2-cycle) case:

• No deterministic SP mechanism can give 2-eps 
approximation to social welfare maximization

• No randomized SP mechanism can give 6/5-eps approx
• But!  Ongoing work by a few groups hints at dynamic 

models being both more realistic and less “impossible”!
Reality: transplant centers strategize like crazy!  [Stewert et al. 13]
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NEXT CLASS:
COMBINATORIAL OPTIMIZATION

ALSO: EMAIL ME ABOUT PRESENTING!
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