APPLIED MECHANISM DESIGN FOR SOCIAL GOOD

JOHN P DICKERSON

Lecture #8 - 02/20/2018

CMSC828M Tuesdays & Thursdays 9:30am – 10:45am

PRESENTATION LIST IS ONLINE!

(CLASS WEBSITE UPDATED SOON)

THIS CLASS: STACKELBERG & SECURITY GAMES

Thanks to: AGT book, Conitzer (VC), Procaccia (AP)

SIMULTANEOUS PLAY

Previously, assumed players would play simultaneously

- Two drivers simultaneously decide to go straight or divert
- Two prisoners simultaneously defect or cooperate
- Players simultaneously choose rock, paper, or scissors
- Etc ...

No knowledge of the other players' chosen actions

What if we allow sequential action selection ...?

LEADER-FOLLOWER GAMES

Two players:

- The leader commits to acting in a specific way
- The follower observes the leader's mixed strategy

NE, iterated strict dominance

What is the Nash equilibrium ????????

- Social welfare: 2
- Utility to row player: 1

Row player = leader; what to do ???????

- Social welfare: 3
- Utility to row player: 2

Heinrich von Stackelberg

Commit to "Bottom"

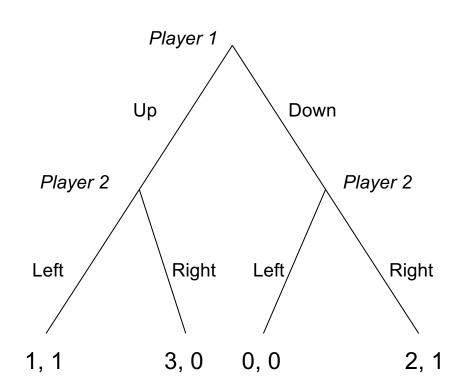
0, 0 2, 1

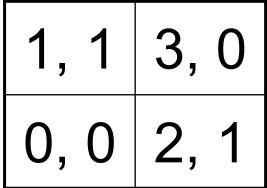
ASIDE: FIRST-MOVER ADVANTAGE (FMA)

From the econ side of things ...

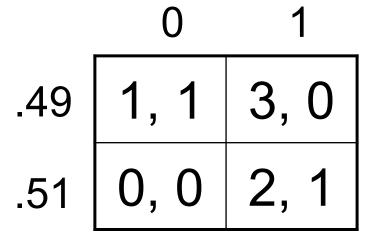
- Leader is sometimes called the Market Leader
- Some advantage allows a firm to move first:
 - Technological breakthrough via R&D
 - Buying up all assets at low price before market adjusts
- By committing to a strategy (some amount of production), can effectively force other players' hands.

Things we won't model:


• Significant cost of R&D, uncertainty over market demand, initial marketing costs, etc.

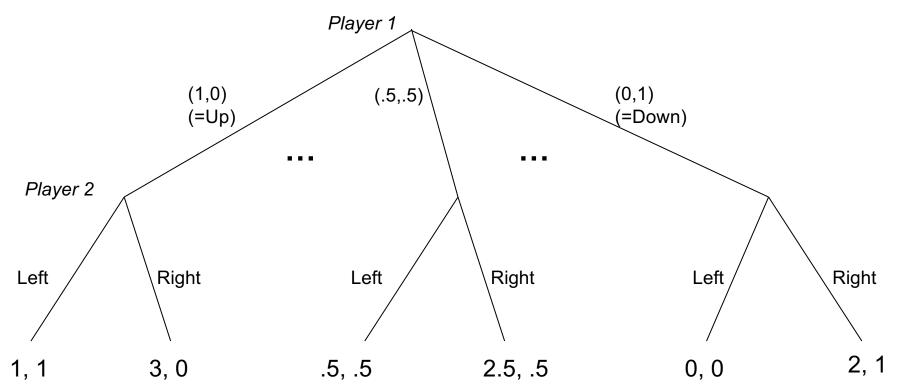

These can lead to Second-Mover Advantage

• Atari vs Nintendo, MySpace (or earlier) vs Facebook

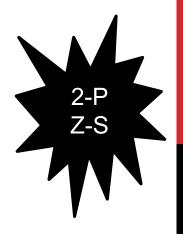

COMMITMENT AS AN EXTENSIVE-FORM GAME

For the case of committing to a pure strategy:

COMMITMENT TO MIXED STRATEGIES



What should Column do ???????


Sometimes also called a Stackelberg (mixed) strategy

COMMITMENT AS AN EXTENSIVE-FORM GAME...

For the case of committing to a mixed strategy:

- Economist: Just an extensive-form game ...
- Computer scientist: Infinite-size game! Representation matters


Special case: 2-player zero-sum normal-form games Recall: Row player plays Minimax strategy

Minimizes the maximum expected utility to the Col

Doesn't matter who commits to what, when

Minimax strategies = Nash Equilibrium = Stackelberg Equilibrium (not the case for general games)

Polynomial time computation via LP – Lecture #4

Separate LP for every column c*:

 $\begin{array}{l} \textit{maximize } \Sigma_{r} \ p_{r} \ u_{R}(r, \ c^{*}) \quad \mbox{Row utility} \\ \textit{s.t.} \\ \textit{for all } c, \ \Sigma_{r} \ p_{r} \ u_{C}(r, \ c^{*}) \geq \Sigma_{r} \ p_{r} \ u_{C}(r, \ c) \quad \mbox{Column optimality} \\ \Sigma_{r} \ p_{r} = 1 \quad \mbox{Distributional} \\ \textit{for all } r, \ p_{r} \geq 0 \end{array}$

Choose strategy from LP with highest objective

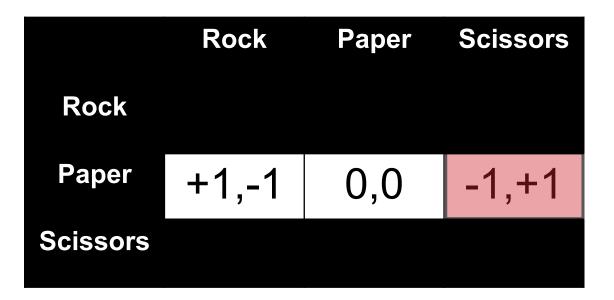
[Conitzer & Sandholm, Computing the optimal strategy to commit to, EC-06]

RUNNING EXAMPLE

maximize 1x + 0ys.t. $1x + 0y \ge 0x + 1y$ x + y = 1 $x \ge 0$ $y \ge 0$ maximize 3x + 2ys.t. $0x + 1y \ge 1x + 0y$ x + y = 1 $x \ge 0$ $y \ge 0$

VC

IS COMMITMENT ALWAYS GOOD FOR THE LEADER?


Yes, if we allow commitment to mixed strategies

• Always weakly better to commit [von Stengel & Zamir, 2004]

What about only pure strategies?

Expected utility to Row by playing mixed Nash: ?????????? E_R[<1/3,1/3,1/3>] = 0

```
E<sub>R</sub>[ <1,0,0> ] = -1
E<sub>R</sub>[ <0,1,0> ] = -1
E<sub>R</sub>[ <0,0,1> ] = -1
```


Bayesian games: player *i* draws type θ_i from Θ Special case: follower has only one type, leader has type θ

Like before, solve a separate LP for every column c*:

```
 \begin{array}{l} \textit{maximize } \Sigma_{\theta} \pi(\theta) \ \Sigma_{r} \ p_{r,\theta} \ u_{R,\theta}(r, \ c^{*}) \\ \textit{s.t.} \\ \textit{for all } c, \ \Sigma_{\theta} \pi(\theta) \ \Sigma_{r} \ p_{r,\theta} \ u_{C}(r, \ c^{*}) \geq \Sigma_{\theta} \pi(\theta) \ \Sigma_{r} \ p_{r,\theta} \ u_{C}(r, \ c) \\ \textit{for all } \theta, \ \Sigma_{r} \ p_{r,\theta} = 1 \\ \textit{for all } r, \theta, \ p_{r,\theta} \geq 0 \end{array}
```

Choose strategy from LP with highest objective

- 2-Player, zero-sum
- 2-Player, general-sum
- 2-Player, general-sum, Bayesian with 1-type follower

In general, NP-hard to compute:

- 2-Player, general-sum, Bayesian with 1-type leader
 - Arguably more interesting ("I know my own type")
- 2-Player, general-sum, Bayesian general
- *N*-Player, for *N* > 2:
 - 1st player commits, N-1-Player leader-follower game, 2nd player commits, recurse until 2-Player leader-follower

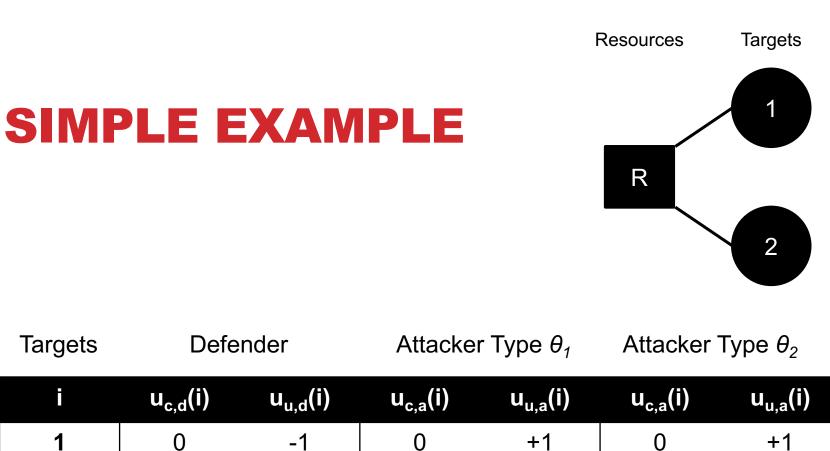
STACKELBERG SECURITY GAMES

Leader-follower → Defender-attacker

- Defender is interested in protecting a set of targets
- Attacker wants to attack the targets

The defender is endowed with a set of resources

• Resources protect the targets and prevent attacks


Utilities:

- Defender receives positive utility for preventing attacks, negative utility for "successful" attacks
- Attacker: positive utility for successful attacks, negative otherwise
- Not necessarily zero-sum

SECURITY GAMES: A FORMAL MODEL

Defined by a 3-tuple (N, U, M):

- N: set of *n* targets
- U: utilities associated with defender and attacker
- M: all subsets of targets that can be simultaneously defended by deployments of resources
 - A schedule S ⊆ 2^N is the set of target defended by a single resource r
 - Assignment function A : R → 2^s is the set of all schedules a specific resource can support
- Then we have *m* pure strategies, assigning resources such that the union of their target coverage is in M
- Utility u_{c,d}(i) and u_{u,d}(i) for the defender when target i is attacked and is covered or defended, respectively

+1

00

[Blum, Haghtalab, Procaccia, Learning to Play Stackelberg Security Games, 2016]

0

+5

0

-2

1

2

0

REAL-WORLD SECURITY GAMES

Lots of deployed applications!

- Checkpoints at airports
- Patrol routes in harbors
- Scheduling Federal Air Marshalls
- Patrol routes for anti-poachers

Carnegie Mellon

Typically solve for strong Stackelberg Equilibria:

- Tie break in favor of the defender; always exists
- Can often "nudge" the adversary in practice

Two big practical problems: computation and uncertainty

NEXT CLASS:

SURAJ NAIR

WHEN SECURITY GAMES GO GREEN: DESIGNING DEFENDER STRATEGIES TO PREVENT POACHING AND ILLEGAL FISHING. IJCAI 2015.

BROOK STACY

DEPLOYING PAWS: FIELD OPTIMIZATION OF THE PROTECTION ASSISTANT FOR WILDLIFE SECURITY. AAAI 2016.