CMSC 131 Quiz 3 Worksheet

The next quiz for the course will be on Wed, Mar 6. The following list provides additional information about the quiz.

The quiz will be a written quiz (no computer).

Closed book, closed notes quiz.

Answers must be neat and legible.

Quiz instructions can be found at http://www.cs.umd.edu/~nelson/classes/utilities/examRules.html.
Regarding Piazza - Feel free to post questions in Piazza regarding the worksheet and possible solutions to
problems.

The following exercises cover the material to be included in this quiz. Solutions to these exercises will not be
provided, but you are welcome to discuss your solutions with the TAs or instructor during office hours. It is
recommended that you try these exercises on paper first (without using the computer).

Exercises
1. What is the difference between a static method and a non-static method?
2. When you should define a method as static?
3. What is the difference between a non-static field and a static field?
4. What does “this” represent in a class method?
5. Does a constructor for a class constructs the object?
6. Can an object live in the stack?
7. When are parameters and local variables created and destroyed?
8. Define a class Telephone according to the following information:

Instance Variables (all private)

a. area code - integer value

b. three digit value - integer value
c. four digit value - four digit value
d. user name - String reference

Instance Methods

a. Constructor - Allows you to initialize all the instance variables of the class. Name the parameters
after the instance variables (i.e., you must use the this reference)

b. Default constructor - Initializes the object to the number 555-555-5555 and the name to null. This
constructor relies on the previous constructor for object initialization (i.e., you must use this).

c. Copy constructor

d. Get/Set methods - Define get/set methods for all instance variables of the class.

e. equals - Two numbers are considered the same if they have the same area code, three and four digit
values.

f. toString - Returns a string with the user name, followed by the phone number.

Static Variable (private)

a. count - keeps track of the number of Telephone objects that have been created.
Static Methods

a. getCount - Returns the count value.

b. getDigits - In a phone keypad numbers 0 to 9 are associated with characters. The getDigits method
returns a string with the digits that correspond to the provided string. For example for "CAR” the
method will return the integer “227".


http://www.cs.umd.edu/~nelson/classes/utilities/examRules.html

Define a class called House that has the following specification:

Instance Variables (all private)

a. id > integer value representing a house’s id
b. rooms - integer representing the number of rooms

Static Variable (private)

count 2 integer with the default value of 0.

Methods

a. Constructor with id and rooms parameters - Initializes all the instance variables of the object. Name

the parameters after the instance variables. You must increase the count accordingly.

b. Default Constructor - Initializes the object with an id value of -1 and a number of rooms equals to 1.
You must call the previous constructor in order to implement this one.

c. toString - Returns a string with the id, followed by the rooms, followed by the count. Use the following
format:

id: id rooms: rooms count: count

where id and rooms represent the values associated with the object and count is the static variable
value.

d. addToHouse - Static method that has as parameters a House reference and an integer representing a

number of rooms. The method will increase the number of rooms of the provided house by the provided
integer value. The method will return a reference to the House parameter.

e. addRooms - Non-static method that has an integer as a parameter. The parameter represents the
number of rooms to be added to the number of rooms associated with the current object. You must
implement this method using the addToHouse method.

The following driver and associated output illustrates the functionality associated with the House class.

Driver Output

public static void main(String[] args) ({ id: 2 rooms: 4 count: 1
House housel = new House (2, 4); id: -1 rooms: 1 count: 2
System.out.println (housel) ; id: 2 rooms: 64 count: 2

id: -1 rooms: 601 count: 2
House house2 = new House();

System.out.println (house2) ;

House.addToHouse (House.addToHouse (housel, 10), 50);
System.out.println (housel) ;

house2.addRooms (100) .addRooms (500) ;
System.out.println (house2) ;




