CMSC 250 Discrete Structures

Digital Circuits

Definition

What are number bases?

Definition

What are number bases?

How do we convert a number from an arbitrary base into base 10?

Definition

What are number bases?

How do we convert a number from an arbitrary base into base 10?

How do we convert a number from base 10 into an arbitrary base?

Definition

What are number bases?

How do we convert a number from an arbitrary base into base 10?

How do we convert a number from base 10 into an arbitrary base?

We are mostly concerned with base 10(decimal) and base 2 (binary).

Truth Values and Bits

Standard Convention: TRUE is 1, FALSE is 0 *Standard Convention*: *n*-inputs viewed as *n*-bit number.

Truth Values and Bits

Standard Convention: TRUE is 1, FALSE is 0 *Standard Convention*: *n*-inputs viewed as *n*-bit number.

Propositional formula is now Boolean formula

Basic Logic Gates

- An AND gate
- An OR gate
- A NOT gate

Digital Circuits

Definition

A circuit has n Boolean inputs which feed into gates and at the end have one or more outputs.

New problem

• Old Problem: Given a formula, find the truth table for it.

Example

 $(p{\vee}q){\wedge}\sim\!\!(p{\wedge}q)$

New problem

• Old Problem: Given a formula, find the truth table for it.

Example $(p \lor q) \land \sim (p \land q)$

• New Problem: Given a truth table, find a formula for it

New problem

 $(p \lor q) \land \sim (p \land q)$

Example

it

• Old Problem: Given a formula, find the truth table for it.

• New Problem: Given a truth table, find a formula for

• Given a formula find a circuit for it.

Propositional Logic and Circuits

Definition

Each statement of propositional logic can be represented by a circuit with one input for each variable, and a single output bit.

Example

Make circuits for the following:

•
$$p \leftrightarrow q$$

From Truth Tables to circuits

Example

р	q	r	output	
1	1	1	1	
1	1	0	1	
1	0	1	0	
1	0	0	1	
0	1	1	0	
0	1	0	0	
0	0	1	0	
0	0	0	0	

Given a TT...

 for each row R of the TT that returns 1 (or T): for each variable x_i

$$L_i = x_i$$
 if Row R has $x_i = 1$;

$$L_i = \sim x_i$$
 if Row R has $x_i = 0$;

- Write down mini-formula L₁ ∧ ... ∧ L_n
 KEY: This mini-formula is true IFF that row happens.
- Output the OR of all of the mini formulae

Circuits that Calculate

Circuits can perform math!

Example

- Addition of integers
- Multiplication of integers
- Compute $3x^4+2x^2+7$, where x is an integer
- Approximations of real-valued functions.

Goal

Our goal today will be to build a circuit that can add numbers together:

Inputs: 77 and 49 (in binary)

Output: 126 (in binary)

Brute force: Addition by Truth Table

Adding 2-bit numbers

Example

Adding 2-bit numbers:

	х		+ Y	, :	=	Answe	r	
3+3	1	1	1	1	1	1	0	6
3+2	1	1	1	0	1	0	1	5
3+1	1	1	0	1	1	0	0	4
3+0	1	1	0	0	0	1	1	3
2+3	1	0	1	1	1	0	1	5
2+2	1	0	1	0	1	0	0	4
2+1	1	0	0	1	0	1	1	3
2+0	1	0	0	0	0	1	0	2
1+3	0	1	1	1	1	0	0	4
1+2	0	1	1	0	0	1	1	3
1+1	0	1	0	1	0	1	0	2
1+0	0	1	0	0	0	0	1	1
0+3	0	0	1	1	0	1	1	3
0+2	0	0	1	0	0	1	0	2
0+1	0	0	0	1	0	0	1	1
0+0	0	0	0	0	0	0	0	0

Addition of binary Numbers

Example

1001	1001	1011	1101
+ 0010	+ 0011	+ 0010	+ 0111

Half-Adder

Definition

A *half adder* is a circuit that has 2 boolean inputs, 2 boolean outputs, and outputs the sum and the carry.

Half-Adder

Definition

A *half adder* is a circuit that has 2 boolean inputs, 2 boolean outputs, and outputs the sum and the carry.

Full Adder

Definition

A *full adder* is a circuit that has 3 boolean inputs, 2 boolean outputs, and outputs the sum and the carry.

Full Adder

Definition

A *full adder* is a circuit that has 3 boolean inputs, 2 boolean outputs, and outputs the sum and the carry.

Parallel Adder (for 3-bit numbers)

 $X_1 X_2 X_3$ + $Y_1 Y_2 Y_3$ $A_0 A_1 A_2 A_3$

Can be extended to add larger numbers