CMSC 250 Discrete Structures

Predicate Logic

Propositional logic has limitations

Definition

All men are mortal

Socrates is a man

: Socrates is mortal

Predicates

Definition

A *Predicate* is a sentence (containing variables) that is either true or false depending on the values substituted for the variables.

Example

Karim is a student at University of Maryland.

Predicates

Definition

A *Predicate* is a sentence (containing variables) that is either true or false depending on the values substituted for the variables.

Example

Karim is a student at University of Maryland.

The word "Karim" is a subject and "is a student at University of Maryland" is a predicate

Definition

To obtain predicate, we can remove one or more nouns

Example

for the sentence, Karim is a student at University of Maryland. Let,

Definition

To obtain predicate, we can remove one or more nouns

Example

for the sentence, Karim is a student at University of Maryland. Let,

P: is a student at University of Maryland

Definition

To obtain predicate, we can remove one or more nouns

Example

for the sentence, Karim is a student at University of Maryland. Let,

P: is a student at University of Maryland

Q: is a student at

Definition

To obtain predicate, we can remove one or more nouns

Example

for the sentence, Karim is a student at University of Maryland. Let,

P: is a student at University of Maryland

Q: is a student at

Both P and Q are predicate symbols.

Predicate Symbols

Predicate	Domain (set)
Q(x): x is even	$x \; \epsilon \; \mathbb{Z}$
P(x, y, z): $x^2 + y^2 = z^2$	x, y, z ϵ $\mathbb R$
R(a,b): a is a factor of b	a, b ϵ $\mathbb N$
S(a, b): a is taller than b	a,b ϵ students in this class
G(Y): y is green	у є M&M
A(c): c is under attack	c ϵ Computers

Logical Connectives

Definition

The logical connectives can be used to join predicates to make more complex predicates.

•
$$P(x) = \sim Q(x) \lor R(x)$$

$$\bullet \ \mathsf{T}(x,y) = (\mathsf{A}(x) \, \wedge \, \mathsf{G}(x,y)) \to \sim \mathsf{L}(y)$$

Definition

• We have to be able to figure out the truth or falsehood of statements that include variables.

Definition

- We have to be able to figure out the truth or falsehood of statements that include variables.
- We bind the variables using quantifiers, to find out,

Definition

- We have to be able to figure out the truth or falsehood of statements that include variables.
- We bind the variables using quantifiers, to find out,
 - Whether the claim applies to all values of the variable universal quantification

Definition

- We have to be able to figure out the truth or falsehood of statements that include variables.
- We bind the variables using quantifiers, to find out,
 - Whether the claim applies to all values of the variable universal quantification
 - whether it may only apply to some existential quantification.

Universal Quantifier

Definition

The *Universal quantifier*, \forall (for all), says that a statement must be true for all values of a variable.

Example

All humans are mortal ∀x: Human(x) → Mortal(x)
If x is positive then x + 1 is positive ∀x : x > 0 → x + 1 > 0

More Universal Quantifier

Definition

To make the universe of the values explicit, we use set membership notation

Example $\forall x \ \epsilon \ \mathbb{Z} : x > 0 \rightarrow x + 1 > 0$ $\equiv \quad \forall x : x \ \epsilon \ \mathbb{Z} \rightarrow (x > 0 \rightarrow x + 1 > 0)$ $\equiv \quad \forall x : x \ \epsilon \ \mathbb{Z} \rightarrow (x > 0 \rightarrow x + 1 > 0)$

 $\forall x : P(x) \equiv \text{to a very large AND}$

$$\forall x \ \epsilon \ \mathbb{N} : P(x)$$

 $P(0) \land P(1) \land P(2) \land \dots$

Existential Quantifier

Definition

The *Existential quantifier*, \exists (there exists), says that a statement must be true for at least one value of the variable.

Example

There is a student in CMSC 250 $\exists x \in P$ such that x is a student in CMSC 250 where P is a set of all people.

Existential Quantifier

Example

 $\exists x \in Z: x = x^2$

Definition

Therefore, if Q(x) is a predicate and D the domain of x, an existential statement has the form $\exists x \in D$ such that Q(x).

Negation and Quantifier

Definition

The following equivalencies hold:

$$\neg \forall x: P(x) \equiv \exists x: \neg P(x) \\ \neg \exists x: P(x) \equiv \forall x: \neg P(x)$$

Quantifier version of De Morgan's laws

Negation and Quantifier

Definition

The following equivalencies hold:

$$\neg \forall x: P(x) \equiv \exists x: \neg P(x) \\ \neg \exists x: P(x) \equiv \forall x: \neg P(x)$$

Quantifier version of De Morgan's laws

- not all humans are mortal is equivalent to finding some human that is not mortal.
- No human is mortal is equivalent to showing that all humans are not mortal.

Example

All crows are black

Example

• All crows are black

$$\forall x: \, \mathsf{Crow}(x) \to \mathsf{Black}(x)$$

- All crows are black
 - $\forall x: \, \mathsf{Crow}(x) \to \mathsf{Black}(x)$
- Some cows are brown

- All crows are black
 - $\forall x: \, \mathsf{Crow}(x) \to \mathsf{Black}(x)$
- Some cows are brown
 - $\exists x: Cow(x) \land Brown(x)$

- All crows are black
 - $\forall x: \, \mathsf{Crow}(x) \to \mathsf{Black}(x)$
- Some cows are brown
 - $\exists x: \, \mathsf{Cow}(x) \, \land \, \mathsf{Brown}(x)$
- No cows are blue

Example

- All crows are black
 - $\forall x: \, \mathsf{Crow}(x) \to \mathsf{Black}(x)$
- Some cows are brown
 - $\exists x: \, \mathsf{Cow}(x) \, \land \, \mathsf{Brown}(x)$
- No cows are blue

 $\neg \exists x: Cow(x) \land Blue(x)$

- All crows are black
 - $\forall x: \, \mathsf{Crow}(x) \to \mathsf{Black}(x)$
- Some cows are brown
 - $\exists x: \, \mathsf{Cow}(x) \, \land \, \mathsf{Brown}(x)$
- No cows are blue
 - $\neg \exists x: Cow(x) \land Blue(x)$
- All that glitters is not gold

- All crows are black
 - $\forall x: \, \mathsf{Crow}(x) \to \mathsf{Black}(x)$
- Some cows are brown
 - $\exists x: \ \mathsf{Cow}(x) \, \land \, \mathsf{Brown}(x)$
- No cows are blue
 - $\neg \exists x: Cow(x) \land Blue(x)$
- All that glitters is not gold
 - $\neg \forall x: \operatorname{Glitters}(x) \rightarrow \operatorname{Gold}(x)$

Examples

• No shirt, no service

- No shirt, no service $\forall x: \neg Shirt(x) \rightarrow \neg Served(x)$
- Every event has a cause

- No shirt, no service $\forall x: \neg Shirt(x) \rightarrow \neg Served(x)$
- Every event has a cause $\forall x \exists y$: Causes(y,x)
- Every even number greater than 2 can be expressed as the sum of two primes.

Examples

- No shirt, no service $\forall x: \neg Shirt(x) \rightarrow \neg Served(x)$
- Every event has a cause $\forall x \exists y$: Causes(y,x)
- Every even number greater than 2 can be expressed as the sum of two primes.

 $\begin{aligned} \forall x: \ (\mathsf{Even}(x) \land x > 2 \to \exists p \exists q: \ \mathsf{Prime}(p) \land \mathsf{Prime}(q) \\ \land \ (x = p + q)) \end{aligned}$