Discrete Structures

CMSC 250

Modular Arithmetic

Modular Congruence

Definition

- a mod n represents the remainder when an integer a
 is divided by the positive integer n.
- **a** is congruent to **b** modulo **n** if **n** divides a b.
- **a** congruent **b** is represented as, $a \equiv b \mod n$ or $a \equiv_n b$.
- $a \equiv b \mod n$ if $n \mid a b$.

Modular Congruence

Example

- Is 17 congruent to 5 modulo 6?
- Is 24 congruent to 14 modulo 6?

Congruence Theorem

- Theorem: The integers a and b are congruent modulo n if and only if there is an integer k such that a = b + kn.
- Theorem: If $a \equiv b \mod n$ and $c \equiv d \mod n$, then $a + c \equiv b + d \pmod n$ and $ac \equiv bd \pmod n$ $a c \equiv b d \pmod n$ and $a^m \equiv b^m \pmod n$

Example

 $7 \equiv 2 \pmod{5}$ and $11 \equiv 1 \pmod{5}$

Equivalences

Theorem: \forall a,b \in N, the following are equivalent:

- $a \equiv_n b$
- n|(a-b)
- $(\exists k \in \mathbb{Z})[a = b + kn]$.

Quotient Remainder Theorem

Definition

Given any integer n and positive integer d, there exist unique integers q and r such that

$$n = dq + r$$
 and $0 \le r < d$

Example

- n = 54, d = 4
 - n = -54, d = 4
 - n = 54, d = 70

Quotient Remainder Theorem Representation

If we represent integers using the quotient remainder theorem, we observe

theorem, we obse	erve
Modulus	Forms
2	2q, $2q+1$
3	3q, 3q + 1, 3q + 2
4	4q, 4q + 1, 4q + 2, 4q + 3
k	kq, kq + 1, kq + 2 kq + (k-1)

Using quotient remainder theorem

- $\forall n, 2n^2 + 3n + 2$ is not divisible by 5.
- $(\forall n \in \mathbb{Z})[3 \not| n \rightarrow n^2 \equiv_3 1]$

Floor and Ceiling

Definition

•
$$\forall x \in \mathbb{R}, n \in \mathbb{Z}$$

$$|x| = n \Leftrightarrow n \le x < n+1$$

 $\lceil x \rceil = n \Leftrightarrow n-1 < x \leq n$

• $\forall x \in \mathbb{R}, n \in \mathbb{Z}$

Proofs with Floor and Ceiling

- Theorem: $(\forall x \in \mathbb{R})(\forall y \in \mathbb{Z})[|x+y| = |x| + y]$
- Theorem: The floor of (n/2) is either
 a) n/2 when n is even, or
 b) (n-1)/2 when n is odd.

Sequences, Summations and Products

Practice finding an explicit formula

Figure out the formula for this sequence:

$$1, -\frac{1}{4}, \frac{1}{9}, -\frac{1}{16}, \frac{1}{25}, \cdots$$