CMSC 250 Midterm II

Review

Proof by cases

Example

Use a proof by cases to show that 100 is not the cube of a positive integer.

Constructive Proofs of Existence

Prove that there exists a pair of consecutive integers such that one of these integers is a perfect square and the other is a perfect cube.

Universal Generalization - Method of Proof

- The most common technique for proving universally quantified statements.
- If you're not sure how to start try this!

```
Definition

Theorem: (\forall x \in D)[P(x)]

Proof:

let a \in D, arbitrarily chosen.

...

P(a)

Since a was chosen arbitrarily, P(x) holds for all x \in D.
```

Congruent Modulo Theorem

Let *m* be a positive integer. The integers *a* and *b* are congruent modulo *m* if and only if there is an integer *k* such that a = b + km

Congruent Modulus properties

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

Fundamental Theorem of Arithmetic (Unique Prime Factorization Theorem)

Definition

Given any integer n > 1, there exist a positive integer k, distinct prime numbers p_1, p_2, \ldots, p_k , and positive integers e_1, e_2, \ldots, e_k such that

$$n=p_1^{e_1}p_2^{e_2}p_3^{e_3}\ldots p_k^{e_k}$$

and $p_1 < p_2 < \ldots < p_k$.

Quotient Remainder Theorem

Definition

Given any integer n and positive integer d, there exist unique integers q and r such that

$$n = dq + r$$
 and $0 \le r < d$

Quotient Remainder Theorem Representation

If we represent integers using the quotient remainder theorem, we observe Modulus Forms

2 2q, 2q + 13 3q, 3q + 1, 3q + 24 4q, 4q + 1, 4q + 2, 4q + 3.... k kq, kq + 1, kq + 2 ... kq + (k-1)

Remainder

Find remainder of $4^{2349321230}$ when divided by 15.

Floors and Ceilings

For any integer *n*,

$$\left\lfloor \frac{n}{2} \right\rfloor = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ \frac{n-1}{2} & \text{if } n \text{ is odd} \end{cases}$$

Summation

 $\sum_{i=50}^{100} i$

Mathematical Induction

For $n \geq 1$

 $1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \ldots + n \cdot n! = (n+1)! - 1$

Strong Induction

$$a_1=1, a_2=8$$
 and $a_n=a_{n-1}+2a_{n-2}$ for $n\geq 3$
Prove that $a_n=3\cdot 2^{n-1}+2(-1)^n$ for all $\mathsf{n}\in\mathbb{N}$

Constructive Induction

Find

 $\sum_{i=1}^{n} i^2$