CMSC 250
Discrete Structures
Set Theory
Proving two sets are equal using the rule sheet

Claim: $A = B$.

Proof:

- $A = X$ [By rule called…]
- $= Y$ [By rule called…]
- $= Z$ [By rule called…]
- $= B$ [By rule called…]
Deriving new properties using rules (or from definitions)

\[B - (A \cap C) = (B - A) \cup (B - C) \]

\[A - B = A - (A \cap B) \]
Using Venn diagrams to help find counterexamples

\[A \cup (B \cap C) = ? = (A \cap B) \cup (A \cap C) \]

\[A \cup (B - C) = ? = (A \cup B) - C \]

Trick: Draw the Venn diagrams and find a cell where they disagree. Make sure your counterexample has an element in that cell.
Proofs about power sets

• Claim: \(A \subseteq B \implies \mathcal{P}(A) \subseteq \mathcal{P}(B) \)

• Claim: For finite sets, \(A: \ [n(A) = k \implies n(\mathcal{P}(A)) = 2^k] \)
 [Think about inductive step with a small example.]

• Claim: \(\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B) \)
 Does this work for union?
Partitions of a set

- A collection of nonempty sets \(\{A_1, A_2, \ldots, A_n\} \) is a partition of the set \(A \) if and only if
 1. \(A = A_1 \cup A_2 \cup \ldots \cup A_n \)
 2. \(A_1, A_2, \ldots, A_n \) are mutually disjoint

An infinite set can be partitioned. The partitions can be infinite, or can be finite.

Examples
Russell’s Paradox

Definition

Most sets are not elements of themselves. Let S be the set of all sets that are not elements of themselves:

$$S = \{ A | A \text{ is a set and } A \notin A \}$$

Is S an element of itself.