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13!
2! ⋅ 2! ⋅ 2! = ⋯



General template

• Total # permutations of a string 𝜎𝜎 of letters of length n where there 

are 𝑛𝑛𝑎𝑎 ′𝑠𝑠′𝑠𝑠,𝑛𝑛𝑏𝑏 ′𝑏𝑏′𝑠𝑠,𝑛𝑛𝑐𝑐 ′𝑠𝑠′𝑠𝑠, …𝑛𝑛𝑧𝑧 ’z’s

𝑛𝑛!
𝑛𝑛𝑎𝑎! × 𝑛𝑛𝑏𝑏! × ⋯× 𝑛𝑛𝑧𝑧!
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General template

• Total # permutations of a string 𝜎𝜎 of letters of length n where there 

are 𝑛𝑛𝑎𝑎 ′𝑠𝑠′𝑠𝑠,𝑛𝑛𝑏𝑏 ′𝑏𝑏′𝑠𝑠,𝑛𝑛𝑐𝑐 ′𝑠𝑠′𝑠𝑠, …𝑛𝑛𝑧𝑧 ’z’s

𝑛𝑛!
𝑛𝑛𝑎𝑎! × 𝑛𝑛𝑏𝑏! × ⋯× 𝑛𝑛𝑧𝑧!

• Claim: This formula is problematic when some letter (a, b, …, z) is not
contained in 𝜎𝜎

Yes No

Remember: 

0! = 1



𝑝𝑝-permutations

• Warning: permutations (as we’ve talked about them) are best 

presented with strings.

• 𝑝𝑝-permutations: Those are best presented with sets.

• Note that 𝑝𝑝 ∈ ℕ
• So we can have 2-permutations, 3-permutations, etc



𝑝𝑝-permutations: Example

• I have ten people.

• My goal: pick three people for a picture, where order of the people 
matters.



𝑝𝑝-permutations: Example

• I have ten people.

• My goal: pick three people for a picture, where order of the people 
matters.
• Examples: shortest-to-tallest or tallest-to-shortest or something-in-

between 
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• I have ten people.

• My goal: pick three people for a picture, where order of the people 
matters.
• Examples: Jenny-Fred-Bob or Fred-Jenny-Bob or Fred-Bob-Jenny



𝑝𝑝-permutations: Example

• I have ten people.

• My goal: pick three people for a picture, where order of the people 
matters.
• In how many ways can I pick these people?
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𝑝𝑝-permutations: Example

I need three 

people for this 

photo. You 

guys figure out 

your order.
For a total of 10 ×
9 × 8 =720 ways.

Note: 10 × 9 × 8 =
10!

10 −3 !



Example on Books

• Clyde has the following books on his bookshelf

• Epp, Rosen, Hughes, Bogart, Davis, Shaffer, Sellers, Scott

• Jason wants to borrow any 5 of them and read them in the order he 

picks them in.

• In how many ways can Jason get smart by reading those books?



Example on Books

• Clyde has the following books on his bookshelf

• Epp, Rosen, Hughes, Bogart, Davis, Shaffer, Sellers, Scott

• Jason wants to borrow any 5 of them and read them in the order he 

picks them in.

• In how many ways can Jason get smart by reading those books?

8!
8 − 5 ! =

8!
3!



General formula

• Let 𝑛𝑛, 𝑝𝑝 ∈ ℕ such that 0 ≤ 𝑝𝑝 ≤ 𝑛𝑛. The total ways in which we can 

select 𝑝𝑝 elements from a set of 𝑛𝑛 elements where order matters is 

equal to:

𝑃𝑃 𝑛𝑛, 𝑝𝑝 =
𝑛𝑛!

𝑛𝑛 − 𝑝𝑝 !



General formula

• Let 𝑛𝑛, 𝑝𝑝 ∈ ℕ such that 0 ≤ 𝑝𝑝 ≤ 𝑛𝑛. The total ways in which we can 

select 𝑝𝑝 elements from a set of 𝑛𝑛 elements where order matters is 

equal to:

𝑃𝑃 𝑛𝑛, 𝑝𝑝 =
𝑛𝑛!

𝑛𝑛 − 𝑝𝑝 !

‘’P” for permutation. This quantity is known as the 𝑝𝑝-permutations of a set with 

𝑛𝑛 elements.



Pop quizzes

1) 𝑃𝑃 𝑛𝑛, 1 = ⋯ 0 1 𝑛𝑛 𝑛𝑛!



Pop quizzes

1) 𝑃𝑃 𝑛𝑛, 1 = ⋯

• Two ways to convince yourselves:

• Formula: 
𝑛𝑛!

𝑛𝑛−1 ! = 𝑛𝑛
• Semantics of 𝑝𝑝-permutations: In how many ways can I pick 1 element from a 

set of 𝑛𝑛 elements? Clearly, I can pick any one of 𝑛𝑛 elements, so 𝑛𝑛 ways.

0 1 𝑛𝑛 𝑛𝑛!



Pop quizzes

2) 𝑃𝑃 𝑛𝑛,𝑛𝑛 = ⋯ 0 1 𝑛𝑛 𝑛𝑛!



Pop quizzes

2) 𝑃𝑃 𝑛𝑛,𝑛𝑛 = ⋯

• Again, two ways to convince ourselves:

• Formula: 
𝑛𝑛!

𝑛𝑛−𝑛𝑛 ! = 𝑛𝑛!
0!

• Semantics: 𝑛𝑛! ways to pick all of the elements of a set and put them in order!

0 1 𝑛𝑛 𝑛𝑛!



Pop quizzes

3) 𝑃𝑃 𝑛𝑛, 0 = ⋯ 0 1 𝑛𝑛 𝑛𝑛!



Pop quizzes

3) 𝑃𝑃 𝑛𝑛, 0 = ⋯

• Again, two ways to convince ourselves:

• Formula: 
𝑛𝑛!

𝑛𝑛−0 ! = 𝑛𝑛!
𝑛𝑛! = 1

• Semantics: Only one way to pick nothing: just pick nothing and leave! 

0 1 𝑛𝑛 𝑛𝑛!



Practice

1. How many MD license plates are possible to create?
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Practice

1. How many MD license plates are possible to create? 262 ⋅ 105

2. How many ATM PINs are possible? 104

3. How many words of length 10 can I construct from the English 

alphabet, where letters can be chosen:

a) With replacement (as in, I can reuse letters) 2610

b) Without replacement (as in, I cannot reuse letters) 𝑃𝑃 26, 10 = 26!
16!



Practice

1. How many MD license plates are possible to create? 262 ⋅ 105

2. How many ATM PINs are possible? 104

3. How many words of length 10 can I construct from the English 

alphabet, where letters can be chosen:

a) With replacement (as in, I can reuse letters) 2610

b) Without replacement (as in, I cannot reuse letters) 𝑃𝑃 26, 10 = 26!
16!

Remember these phrases!



Combinations (that “n choose r” stuff)

• Earlier, we discussed this example:

• Our goal was to pick three people for a picture, where order of the people 
mattered.

I need three people 

for this photo. You 

guys figure out your 

order.



• Earlier, we discussed this example:

• We now change this setup to forming a PhD defense committee (also 3 people). 

• In this setup, does order matter?
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We can make this 

selection in 𝑃𝑃(10, 3)
ways…
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We can make this 

selection in 𝑃𝑃(10, 3)
ways… but since 
order doesn’t 
matter, we have 3! 

permutations of 

these people that 

are equivalent.
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Combinations (that “n choose r” stuff)

Overcount/

We can make this 

selection in 𝑃𝑃(10, 3)
ways… but since 
order doesn’t 
matter, we have 3! 

permutations of 

these people that 

are equivalent.



Combinations (that “n choose r” stuff)

Overcount/
In a precise way -

We can make this 

selection in 𝑃𝑃(10, 3)
ways… but since 
order doesn’t 
matter, we have 3! 
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these people that 

are equivalent.



Combinations (that “n choose r” stuff)

Overcount /
In a precise way -

𝑷𝑷(𝟏𝟏𝟏𝟏,𝟑𝟑)
𝟑𝟑! = 𝟏𝟏𝟏𝟏!

𝟕𝟕! × 𝟑𝟑!

We can make this 

selection in 𝑃𝑃(10, 3)
ways… but since 
order doesn’t 
matter, we have 3! 

permutations of 

these people that 

are equivalent.



Closer analysis of example

• Note that essentially we are asking you: Out of a set of 10 people, 

how many subsets of 3 people can I retrieve?



𝑛𝑛
𝑝𝑝 notation

• The quantity 

𝑷𝑷(𝟏𝟏𝟏𝟏,𝟑𝟑)
𝟑𝟑!

is the number of 3-combinations from a set of size 10, denoted thus:

𝑛𝑛
3

and pronounced “n choose 3”.



𝑛𝑛
𝑝𝑝 notation

• Let 𝑛𝑛, 𝑝𝑝 ∈ ℕ with 0 ≤ 𝑝𝑝 ≤ 𝑛𝑛
• Given a set A of size 𝑛𝑛, the total number of subsets of A of size 𝑝𝑝 is:

𝑛𝑛
𝑝𝑝 =

𝑛𝑛!
𝑝𝑝! 𝑛𝑛 − 𝑝𝑝 !
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𝑝𝑝 notation

• Let 𝑛𝑛, 𝑝𝑝 ∈ ℕ with 0 ≤ 𝑝𝑝 ≤ 𝑛𝑛
• Given a set A of size 𝑛𝑛, the total number of subsets of A of size 𝑝𝑝 is:

𝑛𝑛
𝑝𝑝 =

𝑛𝑛!
𝑝𝑝! 𝑛𝑛 − 𝑝𝑝 !

• Pop quiz: ∀𝑛𝑛, 𝑝𝑝 ∈ ℕ [(0 ≤ 𝑝𝑝 ≤ 𝑛𝑛) ⇒ ( 𝑛𝑛
𝑝𝑝 ≤ 𝑃𝑃 𝑛𝑛, 𝑝𝑝 )]

True False



𝑛𝑛
𝑝𝑝 notation

• Let 𝑛𝑛, 𝑝𝑝 ∈ ℕ with 0 ≤ 𝑝𝑝 ≤ 𝑛𝑛
• Given a set A of size 𝑛𝑛, the total number of subsets of A of size 𝑝𝑝 is:

𝑛𝑛
𝑝𝑝 =

𝑛𝑛!
𝑝𝑝! 𝑛𝑛 − 𝑝𝑝 !

• Pop quiz: ∀𝑛𝑛, 𝑝𝑝 ∈ ℕ [(0 ≤ 𝑝𝑝 ≤ 𝑛𝑛) ⇒ ( 𝑛𝑛
𝑝𝑝 ≤ 𝑃𝑃 𝑛𝑛, 𝑝𝑝 )]

True False
Recall that 

𝑛𝑛
𝑝𝑝 = 𝑃𝑃(𝑛𝑛,𝑟𝑟)

𝑟𝑟! and 𝑝𝑝! ≥ 1
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else
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1 = 𝑛𝑛

2. 𝑛𝑛
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else
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Quiz

1. 𝑛𝑛
1 = 𝑛𝑛

2. 𝑛𝑛
𝑛𝑛 = 1 (Note how this differs from 𝑃𝑃 𝑛𝑛,𝑛𝑛 = 𝑛𝑛!)

3. 𝑛𝑛
0 = 1

1 𝑛𝑛 𝑛𝑛! Sth
else


