CMSC 250

Functions

Discrete Structures

Function

- A function assigns members of one set (the domain) to members of another set (co-domain)
- · The range is the subset of the co-domain that gets "hit"

Function

 A member of the domain can only be assigned to one member of the co-domain

Are these functions?

Function

There are many ways to express functions:

Let
$$A = \{1, 2, 3\}$$
 $B = \{4, 8, 12\}$

 $f : A \rightarrow B$ such that for all $a \in A$, f(a) = 4a

 $f: A \rightarrow B$ such that $a \mapsto 4a$

$$f = \{<1, 4>, <2, 8>, <3, 12>\}$$

Total vs. Partial

- A total function assigns every member of the domain to an element of the co-domain
- A partial function may not assign every member of the domain

Total Function 1 5 A B 7 12 D

Injective Function

A function is **one-to-one** or **injective** if every element of the range is associated with *exactly one* element from the domain.

Surjective Function

A function is **onto** or **surjective** if the range is equal to the entire co-domain.

Bijective Function

A function is **bijective** if it is both injective (one-to-one) and surjective (onto)

Bijection 7

Consider the function $f(x) = \sin(x)$

Which is true?

A. Both one-to-one and onto (bijection)

B. Neither one-to-one nor onto

C. One-to-one but not onto

D. Onto but not one-to-one

E. I don't know

Inverse Image

Let y be an element of the co-domain of a function.

The **inverse image** of y is the subset of the domain that maps to y.

What is the inverse image of...

- A?
- C?
- B?

Inverse Function

Let f be a function. The **inverse** of f, denoted f^{-1} , is a function that "reverses" f.

e.g.:
$$f(7)$$
 = "aardvark" \leftrightarrow f^{-1} ("aardvark") = 7

Not all functions have inverses.

Suppose $f: A \to B$, and consider $f^{-1}: B \to A$

- What can we say about f^{-1} if f is not one-to-one?
- What can we say about f^{-1} if f is one-to-one but not onto?
- What can we say about f^{-1} if f is a bijection?

Proving (or disproving) that a function is Injective

```
Let f: D \to C such that...
Claim: f is 1 to 1.
Proof:
    Let a, b \in D such that f(a) = f(b).
    a = b
Claim: f is not 1 to 1.
Proof:
    [Find two different elements of the domain that are
    mapped to the same value]
```

Examples:

- $f: R \to R$ such that f(x) = 3x + 7
- $f: R \{1\} \to R$ such that f(x) = (x+1)/(x-1)
- $f: Z \to Z$ such that $f(x) = x \mod 7$

Proving (or disproving) that a function is Surjective

```
Let f: D \to C such that...
Claim: f is onto.
Proof:
    Let c \in C (arbitrarily selected).
    there exists d \in D such that f(d) = c.
Claim: f is not onto.
Proof:
    (Find an element of the codomain such for
    all d \in D, f(d) is not equal to that element
```

Examples:

- $f: R \to R$ such that f(x) = 3x + 7
- $f: R \to \mathbb{Z}$ such that $f(x) = \lfloor x/2 \rfloor$
- $f: R^+ \to R$ such that $f(x) = \sqrt{x}$

Proving a function is a bijection

Let $f: D \to C$ such that...

Claim: f is a bijection.

Proof:

Part 1 [Prove f is one-to-one]...

Part 2 [Prove f is onto]...

Composition of functions

Let $f: X \to Y$ and $g: Y \to Z$

$$-(g f): X \rightarrow Z \text{ where } (\forall x \in X)[(g f)(x)=g(f(x))]$$

Composition of functions

Let $f: X \to Y$ and $g: Y \to Z$.

What can we say about the domain and range of g f?

Composition on finite sets- example

• Example

$$X = \{1,2,3\}, Y = \{a,b,c,d,e\}, Z = \{x,y,z\}$$

f(1) = c	g(a) = y	(g f)(1) = ?
f(2) = b	g(b) = y	(g f)(2) = ?
f(3) = a	g(c) = z	(g f)(3) = ?
	g(d) = x	
	g(e) = x	

Composition for infinite sets- example

f:
$$Z \rightarrow Z$$
 f(n) = n + 1

Note: $g f \neq f g$

g: $Z \rightarrow Z$ g(n) = n^2