For each of the following statements, either prove the statement or give a counterexample that shows the statement is false. **We will use the (non-standard) notation \(\mathbb{I} \) to represent the irrational numbers.**

Each problem is worth 10 points.

1. For all \(m \in \mathbb{N}^2 \), \(m^2 - 1 \) is composite.
2. For all integers \(a \) and \(b \): If \(ab \) is even then \(a \) is even or \(b \) is even.
3. For all integers \(a, b, \) and \(c \): If \(a|c \) and \(b|c \) then \(ab|c \).
4. For all integers \(a, b, \) and \(c \): If \(a|b \) and \(a|c \) then \(a|(b - c) \).
5. For all integers \(a \) and \(b \): If \(a|12b \) then \(a|12 \) or \(a|b \).
6. For all integers \(a, b, \) and \(c \): If \(a|(b + c) \) then \(a|b \) or \(a|c \).
7. For all integers \(m \), if 7 is a factor of \(m \) then 7 is not a factor of \(m + 6 \).
8. \((\forall x \in \mathbf{I}^+)(\sqrt{x} \in \mathbf{I})\)
9. \((\forall x, y \in \mathbb{Q})(\forall z \in \mathbf{I})(\text{If } y \neq 0 \text{ then } x + yz \in \mathbf{I})\)
10. \(\log_5(2) \in \mathbf{I}\). Hint: Consider using the Fundamental Theorem of Arithmetic.