Homework 5 – Due Friday 3/15

- 1. What is the remainder when 7^{5555} is divided by 6? Explain briefly.
- 2. What is the remainder when 5^{7777} is divided by 6? Explain briefly.
- 3. What is the remainder when 5^{6666} is divided by 6? Explain briefly.
- 4. Let k be the number of people on the planet Earth. What is the remainder when $15k^{200} + 6(k+2)^{71} + 302$ is divided by 3? Explain briefly.
- 5. Use modular congruence (mod 2) to decide whether or not the following number is even or odd: $722^{77} 333^{99}(55^{100})$
- 6. An "Equivalence Relation" is reflexive, symmetric, and transitive. Prove that modular congruence is an equivalence relation, by proving the following:
 - a. Prove that modular congruence is reflexive: $\forall x \in \mathbb{Z}, \forall n \geq 1 [x \equiv_n x]$
 - b. Prove that modular congruence is symmetric: $\forall x, y \in Z, \forall n \geq 1 [x \equiv_n y \rightarrow y \equiv_n x]$
 - c. Prove that modular congruence is transitive:

$$\forall x, y, z \in Z, \forall n \ge 1[(x \equiv_n y \text{ and } y \equiv_n z) \rightarrow x \equiv_n z]$$

- 7. Prove that for all natural numbers, n: n is not congruent to $n^2-4 \pmod 9$
- 8. Prove that for all natural numbers, n: n is divisible by 9 if and only if the sum of the digits of n is divisible by 9. Hint: We did a similar example in class.
- 9. Show that if n is a natural number and n is congruent to 3 (mod 4) then one of the prime factors of n must also be congruent to 3 (mod 4).
- 10. Prove that for all integers n and d: $d|n \leftrightarrow n = d \cdot \lfloor n/d \rfloor$
- 11. Prove that for any real number x: If x is not an integer, then $\lfloor x \rfloor + \lfloor -x \rfloor = -1$