Homework 6 - Due Friday, 03/29

1. Evaluate the following expressions:

$$\sum_{i=-2}^{2} (i^2 + 1) \qquad \qquad \sum_{i=1}^{3} \sum_{j=1}^{3} (3i + j) \qquad \qquad \prod_{i=1}^{3} \sum_{j=1}^{3} (ij)$$

- 2. For each of the following claims:
 - Re-state the claim using summation notation, if applicable.
 - Prove the claim by induction. Be sure to carefully show all of the following steps:
 - Assert that you are inducting on a particular variable.
 - State the element for which the base case applies, and prove it.
 - State the inductive hypothesis
 - Label the inductive step and state what you must show
 - Prove the inductive step, being careful to label the point at which the inductive hypothesis is being applied.

a. Claim: For all
$$n > 0$$
: $2 + 4 + 6 + \cdots + 2n = n^2 + n$

b. Claim: For all
$$n \ge 3$$
: $4^3 + 4^4 + 4^5 + \dots + 4^n = 4(4^n - 16)/3$

c. Claim: For all
$$n \ge 1$$
: $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$

d. Claim: For all
$$n \ge 0$$
: $6 \mid 7^n - 1$

e. Claim: For all
$$n \ge 4$$
: $2^n < n$!

f. Claim: For all
$$n \ge 1$$
:

$$\sum_{i=1}^n \frac{1}{i^2} \le 2$$

Hint: This proof is much easier if you first prove that (for all $n \ge 1$):

$$\sum_{i=1}^{n} \frac{1}{i^2} \le 2 - \frac{1}{n}$$