Homework 7 – Due Friday, April 5th

- 1. Prove each of the following claims using strong induction. Be sure to:
 - Assert that you are invoking strong induction on a particular variable.
 - State the element(s) for which the base case(s) apply, and prove them.
 - Carefully state the inductive hypothesis. (Be sure to follow the examples from class!)
 - Label the inductive step and state what you must show
 - Prove the inductive step, being careful to label the point at which the inductive hypothesis is being applied.
 - a. Let a_n be the recurrence defined by: $a_0 = 12$, $a_1 = 29$, and for all $n \ge 2$, $a_n = 5a_{n-1} 6a_{n-2}$. Prove that for all $n \ge 0$: $a_n = 5 \cdot 3^n + 7 \cdot 2^n$
 - b. Let a_n be the recurrence defined by: $a_0 = 1$, $a_1 = 2$, $a_2 = 3$, and for all $n \ge 3$, $a_n = a_{n-1} + a_{n-2} + a_{n-3}$. Prove that for all $n \ge 0$: $a_n \le 3^n$
 - c. Let a_n be the recurrence defined by: $a_1 = 1, a_2 = 3$, and for all $n \ge 3, a_n = a_{n-1} + a_{n-2}$. Prove that for all $n \ge 1$: $a_n \le \left(\frac{7}{4}\right)^n$
 - d. Prove that if you only have 3 cent and 5 cent coins available, you can generate any amount of money that is greater than or equal to 13 cents.
- 2. Let a_n be the recurrence defined by: $a_0 = 4$, $a_1 = 7$, and for all $n \ge 2$, $a_n = 2a_{n-1} + 5a_{n-2}$. Using constructive induction, find integer constants A and B such that for all $n \ge 0$, $a_n \le AB^n$. Try to make B as small as possible.