- 1. Prove each statement is true or find a specific counterexample. Assume all sets are subsets of a universal set, U. If the statement is true, prove it TWO different ways: First, straight from the definitions (i.e.: let x be an arbitrary element of some set, etc). Then prove it using the rules of set theory on your sheet of rules and equivalencies.
 - a. For all sets A, B, and C, $(B \cup C) A = (B A) \cup (C A)$.
 - b. For all sets A, B, and C, $(A \cap C) (C \cup A) = \emptyset$
 - c. For all sets A, B, and C, $(A \cap B) \cap C = A (C^c \cup B^c)$
 - d. For all sets A, B, and C, $((A \cup B) C) \cup (A \cap B) = ((A B) \cup (B A)) C$
- 2. Prove each statement is true or find a specific counterexample. Assume all sets are subsets of a universal set, U.
 - a. For all sets A, B, and C, $A \times (B \cup C) = (A \times B) \cap (A \times C)$.
 - b. For all sets A and B, $|\mathcal{P}(A \times B)| \neq |\mathcal{P}(A) \times \mathcal{P}(B)|$.
 - c. For all sets A and B, if $A B = \emptyset$ then A = B.
 - d. For all sets A, B, and C, $(A B) \cup (B A) \neq (A \cup B) (A \cap B \cap C)$.
 - e. If $A \cap B = A$, then $A \cup B = B$.
 - f. If $A \cap B = A$ and $B \cap C = B$, then $A \cap C = A$.
 - g. $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.