Reminders

- Where is the class webpage?
 - Announcements
 - Syllabus
 - Lecture Slides
 - Office hours schedule
 - Lecture Examples
- All students must attend discussion for which they are officially registered
- You are expected to attend every class session
- No electronic devices during class
- Convention for order of variables/interpretations in truth tables

Logical Equivalence

Recall: Two statements are **logically equivalent** if they have the same truth values for every possible interpretation.

Notation:

 $p \equiv \sim p$

How can we check whether or not two statements are logically equivalent?

Example: $\sim (p \lor \sim q) \lor (\sim q \land \sim p) \equiv ? \sim p$

Logical Equivalence

Show that $(p \land q \land r \land s) \lor u$ is **not** logically equivalent to $(p \land q \land r) \land (s \lor u)$

Tautology and Contradiction

• A statement is a **tautology** if it is *true* under every possible interpretation.

• A statement is a **contradiction** if it is *false* under every possible interpretation.

• Examples

Equivalencies in Propositional Logic

Given any statement variables p , q , and r , a tautology t and a contradiction c ,		
the following logical equivalences hold:		
1. Commutative laws:	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$
2. Associative laws:	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
3. Distributive laws:	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
4. Identity laws:	$p \wedge t \equiv p$	$p \lor c \equiv p$
5. Negation laws:	$p \lor \sim p \equiv t$	$p \wedge \sim p \equiv c$
6. Double negative law:	\sim (\sim p) \equiv p	
Idempotent laws:	$p \wedge p \equiv p$	$p \lor p \equiv p$
8. DeMorgan's laws:	$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$
9. Universal bounds laws:	$p \lor t \equiv t$	$p \wedge c \equiv c$
Absorption laws:	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$
 Negations of t and c: 	$\sim t \equiv c$	$\sim c \equiv t$

- You don't need to memorize this
- Posted on class webpage (under "resources")
- We can substitute long expressions for the variables above
- Let's derive a few of these with truth tables

Simplifying Using the "Laws"

Caution:

- Don't confuse variables in the chart with variables you have defined
- Don't skip any steps!
 - Double negation
 - Commutativity

Let's use the "Laws of Equivalence" to simplify this sentence:

~(~p ^ q) ^ (p ∨ ~q)

Deriving Equivalencies Using "Laws"

Previously, we showed (using a truth table):

 \sim (p \vee \sim q) \vee (\sim q $^{\sim}$ p) \equiv \sim p

Let's now demonstrate this equivalency a different way by using the established "laws" of equivalence.

There are many different ways to prove this using the "laws"!

Conditional Connective

- $\mathbf{p} \rightarrow \mathbf{q}$ represents "If p then q" or "p implies q"
- If p is true then q must also be true
- If p is false then q could be either true/false

- Note: precedence is lower than conjunction/disjunction
- Examples translating from English
- Differences between logical connective and everyday English

More Equivalencies

Add this rule to your table of "laws":

12. [Defn of \rightarrow] $p \rightarrow q \equiv {}^{\sim}p \lor q$

Let's prove this:

$$\sim$$
(p \rightarrow q) \equiv p $^{\sim} q$

Definitions for Conditional Statements

```
The converse of p \rightarrow q is q \rightarrow p
The inverse of p \rightarrow q is ^p \rightarrow ^q
The contrapositive of p \rightarrow q is ^q \rightarrow ^p
```

- Examples from English
- Is an implication logically equivalent to its inverse, its converse, or its contrapositive? Let's check!
- Given an implication, what is the relationship between its converse and its inverse?

"If and Only If"

Biconditional Connective: $p \leftrightarrow q$ "p if and only if q"

Add this to your table of "laws":

13. [Defn of \leftrightarrow] $p \leftrightarrow q \equiv (p \rightarrow q)^{(q \rightarrow p)}$

Arguments

An **argument** is a conjecture that says:

If you make certain assumptions, then a particular statement must follow.

- The assumptions are called **premises**
- The statement that (supposedly) follows is the **conclusion**

Example:

