Announcements

- Let's use 1 for True and 0 for False
- Homework #1 has been posted
 - Submit on GradeScope
 - Did you get the email?
 - How to scan and submit
- Office Hours are in room...
- Quiz tomorrow

Arguments

Recall: An **argument** is a conjecture that says: If you make certain assumptions, then a particular statement must follow.

- The assumptions are called **premises**
- The statement that (supposedly) follows is the **conclusion**

Example:

Validity

We say an argument is **valid** when: Every interpretation that makes all of the premises true also makes the conclusion true.

Not all arguments are valid!

Is this argument valid? Let's check.

We will need this today...

Given any statement variables p , q , and r , a tautology t and a contradiction c ,					
the following logical equivalences hold:					
1. Commutative laws:	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$			
2. Associative laws:	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$			
3. Distributive laws:	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$			
4. Identity laws:	$p \wedge t \equiv p$	$p \lor c \equiv p$			
5. Negation laws:	$p \lor \sim p \equiv t$	$p \wedge \sim p \equiv c$			
6. Double negative law:	\sim (\sim p) \equiv p				
Idempotent laws:	$p \wedge p \equiv p$	$p \lor p \equiv p$			
DeMorgan's laws:	$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$			
9. Universal bounds laws:	$p \lor t \equiv t$	$p \wedge c \equiv c$			
Absorption laws:	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$			
 Negations of t and c: 	$\sim t \equiv c$	$\sim c \equiv t$			

Rules of Inference

Rules of inference are short arguments that are known to be valid. We will use them to *prove* the validity of more complex arguments.

Modus Ponens	Me	odus Tollens	Conjunctio	on	Transitivity
p ightarrow q	<i>p</i> –	$\rightarrow q$	p		p ightarrow q
p	$\sim q$		\underline{q}		q o r
$\therefore q$.∴~	p	$\therefore p \wedge q$		$\therefore p ightarrow r$
Elir	ination			Genera	lization
p ee q		$p \lor q$	p		\overline{q}
$\sim q$	_	$\sim p$	$\therefore p \lor q$		$\therefore p \lor q$
$\therefore p$		$\therefore q$			
Specialization	L	Contradi	ction rule	Proof	by division into cases
					$p \lor q$
$p \wedge q$ $p \wedge q$		$\sim p$ –	→ <i>C</i>		p ightarrow r
$\therefore p$ $\therefore q$		$\therefore p$			$q \rightarrow r$
					<i>T</i>

- You don't need to memorize this
- Posted on class webpage (under "resources")

Proof

Instead of using truth tables, we can try to **prove** the validity of an argument.

For now, a **proof** is a sequence of statements, beginning with the premises. Each subsequent statement must follow from the previous statements according to a valid "rule of inference" (or using one of the known equivalencies). The last statement should be the conclusion.

Practicing Formal Proofs

Let's prove the validity of these arguments:

P1: p ∨ q	P1: p^q
P2: $q \rightarrow r$	P2: $p \rightarrow s$
P3: ~p	P3: $\sim r \rightarrow \sim q$
r	∴ s ^ r

- Do these examples represent proofs in the "real world"?
- Are the proofs in the rest of this course going to be this tedious, mechanical, and dull?

Interesting Question

Do you think there could be a **valid** argument (in propositional logic) that is **not provable** using the Equivalence Laws and Rules of Inference that we have on our charts?

Unit 2 Digital Circuits

Number Base Review

What are number bases?

How do we convert a number from an arbitrary base into base 10? How do we convert a number from base 10 into an arbitrary base?

We are mostly concerned with base 10 (decimal) and base 2 (binary).

Basic logic gates

- Computer circuits are comprised of "logic gates". These are physical devices which we will consider in abstract. The "inputs" and "outputs" are bits (0's or 1's)
- An **and** gate: \Box_{AN}
- AND-

- An **or** gate:
- OR
- A **not** gate:

Digital Circuits

Circuits are formed by combining logic gates.

- How many input bits?
- How many output bits?
- What is the output when the input is 110?

Propositional Logic and Circuits

Each statement of propositional logic can be represented by a circuit with one input for each variable, and a single output bit.

Practice making circuits for these:

- p ∨ ~(q ^ r)
- $p \leftrightarrow q$

Hardware representing Truth Tables

- Any column in a truth table can be represented with a statement of propositional logic. How?
- Now any truth table can be built from an actual circuit.

р	q	r	output
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	0

Example:

Circuits that Calculate

Circuits can perform math!

Examples:

- Addition of integers
- Multiplication of integers
- Compute $3x^4 + 2x^2 + 7$, where x is an integer
- Approximations of real-valued functions

Our goal today will be to build a circuit that can add numbers together: **Inputs: 77 and 49** (in binary) **Output: 126** (in binary)

Brute force: Addition by Truth Table

Adding 2-bit numbers:

- Now we can build a circuit with 4 input bits and three output bits.
- How big would this table be with 64-bit operands?
- Is there a more elegant approach?

Addition of binary numbers

Practice:

Can we create a circuit that models this process?

Half-Adder

Circuit that adds two bits together:

Full adder

Circuit that adds three bits together:

Parallel adder (for three bit operands)

 $X_1 X_2 X_3$ + $Y_1 Y_2 Y_3$ $A_0 A_1 A_2 A_3$

Can be extended to add larger numbers