
Announcements

• Let’s use 1 for True and 0 for False

• Homework #1 has been posted
– Submit on GradeScope

– Did you get the email?

– How to scan and submit

• Office Hours are in room…

• Quiz tomorrow
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Arguments

Recall:  An argument is a conjecture that says:
If you make certain assumptions, then a particular statement 
must follow.

• The assumptions are called premises
• The statement that (supposedly) follows is the conclusion

Example:

p  q

q  r

~p

 r

Premises

Conclusion
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Validity

We say an argument is valid when:
Every interpretation that makes all of the premises true also 

makes the conclusion true.

Not all arguments are valid!

Is this argument valid?  Let’s check.

p  q

q  r

~p

 r

Premises

Conclusion
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We will need this today…
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Rules of Inference
Rules of inference are short arguments that are known to be valid.  
We will use them to prove the validity of more complex arguments.

• You don’t need to memorize this
• Posted on class webpage (under “resources”)
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Proof

Instead of using truth tables, we can try to prove the validity of an 
argument.

For now, a proof is a sequence of statements, beginning with the 
premises.  Each subsequent statement must follow from the 
previous statements according to a valid “rule of inference” (or 
using one of the known equivalencies).  The last statement should 
be the conclusion.
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Practicing Formal Proofs

P1:  p  q

P2:  q  r

P3:   ~p

 r

P1:  p ^ q

P2:  p  s

P3:  ~r  ~q

 s ^ r

• Do these examples represent proofs in the “real world”?   
• Are the proofs in the rest of this course going to be this 
tedious, mechanical, and dull?

Let’s prove the validity of these arguments:
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Interesting Question

Do you think there could be a valid argument (in propositional logic) 
that is not provable using the Equivalence Laws and Rules of 
Inference that we have on our charts?
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Unit 2
Digital Circuits
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Number Base Review

What are number bases?

How do we convert a number from an arbitrary base into base 10?
How do we convert a number from base 10 into an arbitrary base?

We are mostly concerned with base 10 (decimal) and base 2 
(binary).
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Basic logic gates

Computer circuits are comprised of “logic gates”.  These are physical devices 
which we will consider in abstract.  The “inputs” and “outputs” are bits (0’s 
or 1’s)

• An and gate:

• An or gate:

• A not gate:
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Digital Circuits
Circuits are formed by combining logic gates.  

• How many input bits?
• How many output bits?
• What is the output when the input is 110?
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Propositional Logic and Circuits

Each statement of propositional logic can be represented by a 
circuit with one input for each variable, and a single output 
bit.

Practice making circuits for these:

• p  ~(q ^ r)

• p  q
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Hardware representing Truth Tables

• Any column in a truth table can be represented with a 
statement of propositional logic.  How?

• Now any truth table can be built from an actual circuit.

Example:
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Circuits that Calculate

Circuits can perform math!

Examples:

• Addition of integers

• Multiplication of integers

• Compute 3x4+ 2x2+7, where x is an integer

• Approximations of real-valued functions

Our goal today will be to build a circuit that can add numbers together:

Inputs:  77 and 49 (in binary)

Output:  126 (in binary)
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Brute force:  Addition by Truth Table

Adding 2-bit numbers: X           +         Y           =           Answer

• Now we can build a circuit with 4 input bits and three output bits.
• How big would this table be with 64-bit operands?
• Is there a more elegant approach?
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Addition of binary numbers

Practice:

1001

+ 0010

1001

+ 0011

1011

+ 0010

1101

+ 0111
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Can we create a circuit that models this process?



Half-Adder

Circuit that adds two bits together:

b2

b1 sum bit

carry bit
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Full adder

half-adder 

#1

half-adder 

#2

b1

b2

b3

S1

C1

C2

Circuit that adds three bits together:

C

S

19



Parallel adder (for three bit operands)

A0A1A2A3 

X3
Y3

X2

Y2

X1

Y1

half-adder

full-adder

full-adder

A3
carry

carry

A0

A2

A1

• Can be extended to add larger numbers

carry
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+ Y1Y2Y3


