Announcements

Let’s use 1 for True and O for False

Homework #1 has been posted
— Submit on GradeScope

— Did you get the email?

— How to scan and submit

Office Hours are in room...

Quiz tomorrow

Arguments

Recall: An argument is a conjecture that says:
If you make certain assumptions, then a particular statement
must follow.

* The assumptions are called premises
* The statement that (supposedly) follows is the conclusion

Example:
PVv()
q—or ~ Premises
~p)

o Conclusion

Validity

We say an argument is valid when:
Every interpretation that makes all of the premises true also
makes the conclusion true.

Not all arguments are valid!

Is this argument valid? Let’s check.

Pv(b
q—or ~ Premises
~p
o Conclusion

We will need this today...

(ziven any statement variables p, g, and r, a tautology t and a contradiction e,
the following logical equivalences hold:

. Commutative laws: pAGQ=gAD nNg=qgVop

2. Associative laws: pAgiAr=paighr) pVgivr=pvigvr)
3. Distributive laws: phlgvri=(piqVipar) pvigar)=(pvVg Alpvr)
{. Identity laws: pAt=p pVe=p

5. Negation laws: pVr~p=I pA~p=o

6. Double negative law: o (rep) =p

7. Idempotent laws: pApD=D pVp=p

8. DeMorgan's laws: ~(pAg) = ~p Vg PV Gy = ~p A g
9. Universal bounds laws: | pvit =1 phe=rc

10. Absorption laws: pViphg)=p ph(pVgl=p

1. Negations of t and o1 | ~t =0 o = 1

Rules of Inference

Rules of inference are short arguments that are known to be valid.
We will use them to prove the validity of more complex arguments.

Modus Ponens Modus Tollens Conjunction Transitivity
pP—4q pP—4q P P—4q
P ~q q q—r
o S p S.phg e
Elimination Generalization
pVyq PV p q
~ ~p S.pVag S.pvyg
S p . q

Specialization

p .-'..\"'__ (; 3) J.l.'_" q
P . q

Contradiction rule

."_,p—' E

Proof by division into cases

pvg
p—T
q—T

LT

* You don’t need to memorize this

* Posted on class webpage (under “resources”)

Proof

Instead of using truth tables, we can try to prove the validity of an
argument.

For now, a proof is a sequence of statements, beginning with the
premises. Each subsequent statement must follow from the
previous statements according to a valid “rule of inference” (or
using one of the known equivalencies). The last statement should
be the conclusion.

Practicing Formal Proofs

Let’s prove the validity of these arguments:

Pl: pvq Pl: p~g
P2: q—or P2: p—s
P3:. ~p P3. ~r > ~Q
L SShT

* Do these examples represent proofs in the “real world”?
* Are the proofs in the rest of this course going to be this
tedious, mechanical, and dull?

Interesting Question

Do you think there could be a valid argument (in propositional logic)
that is not provable using the Equivalence Laws and Rules of
Inference that we have on our charts?

Unit 2
Digital Circuits

Number Base Review

What are number bases?

How do we convert a number from an arbitrary base into base 10?
How do we convert a number from base 10 into an arbitrary base?

We are mostly concerned with base 10 (decimal) and base 2
(binary).

Basic logic gates

Computer circuits are comprised of “logic gates”. These are physical devices
which we will consider in abstract. The “inputs” and “outputs” are bits (0’s
or 1’s)

* An and gate: »
* An or gate: b

* A not gate: b

Digital Circuits

Circuits are formed by combining logic gates.

* How many input bits?
* How many output bits?
 Whatis the output when the input is 1107

Propositional Logic and Circuits

Each statement of propositional logic can be represented by a
circuit with one input for each variable, and a single output
bit.

Practice making circuits for these:

* pv™ahr)
* p&(

Hardware representing Truth Tables

* Any column in a truth table can be represented with a
statement of propositional logic. How?

* Now any truth table can be built from an actual circuit.

Example: D q r output
1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

Circuits that Calculate

Circuits can perform math!

Examples:

* Addition of integers

 Multiplication of integers

* Compute 3x*+2x%+7, where x is an integer
* Approximations of real-valued functions

Our goal today will be to build a circuit that can add numbers together:
Inputs: 77 and 49 (in binary)
Output: 126 (in binary)

Brute force: Addition by Truth Table

Adding 2-bit numbers: X + Y = Answer
3+3 1 1 1 1 1 1 0
3+2 1 1 1 0 1 0 1
3+1 1 1 0 1 1 o) 0
3+0 1 1 0 0 0 1 1
2+3 1 0 1 1 1 0 1
2+2 1 0 1 0 1 0 0
2+1 1 0 0 1 0 1 1
2+0 1 0 0 0 0 1 0
1+3 0 1 1 1 1 0 0
1+2 0 1 1 0 0 1 1
1+1 0 1 0 1 0 1 0
1+0(O 1 0 0 0 0 1
0+3 0 0 1 1 0 1 1
0+2| O 0 1 0 0 1 0
0+1 0 0 0 1 0 0 1
0+0| O 0 0 0 0 0 0

* Now we can build a circuit with 4 input bits and three output bits.
* How big would this table be with 64-bit operands?
* |sthere a more elegant approach?

ORNWENWMANWAMUUIWESLUIO

Addition of binary numbers

Practice:

1001 1001 1011 1101
+ 0010 + 0011 + 0010 + 0111

Can we create a circuit that models this process?

17

Half-Adder

Circuit that adds two bits together:

:1} b
[\

bl NOT 20 : urm bi
o> o) e
b2 —4

bl
b2

Full adder

Circuit that adds three bits together:

half-adder
#1

C

Sy

half-adder

#2

Parallel adder (for three bit operands)

X1X2X3
+ Y,Y,Y;
AOA1A2A3
Xy —] Az
Y, half-adder carry
X2 full-adder A
Y, carry
A
él full-adder !

-

carr;\
A

* Can be extended to add larger numbers 0

