Announcements

• HW #1 is due Tomorrow. Be sure to identify the page where each problem resides.

• HW #2 will be available by tomorrow evening.

• In proofs, work your way from premises toward the conclusion. (Don't work backwards!)

More Practice Translating

For these examples, the domain is natural numbers (\mathbb{N}). We may use quantifiers, variables, the symbols +, -, ×, ÷, =, <, >, and constants like 1 or 57.

Predicates:

- Recall: x is composite
- x is prime
- x is the sum of three primes

Statement (Vinogradov's Theorem):

• Every sufficiently large odd number is the sum of three primes.

Even More practice

Let C = {Creatures on Earth} Let U(x) = "x is a Unicorn", where $x \in C$

Find statements for these:

- There are no Unicorns
- There is at least one Unicorn
- There is at most one Unicorn
- There are exactly one Unicorn
- There are at least two Unicorns
- There are exactly two Unicorns

Free/Bound variables and Statements

Variables that are not "bound" by quantifiers are called **free variables**.

Let P(x) be some predicate defined over domain \mathbb{R} . Which of these are predicates, and which are statements?

- P(x)
- P(7.2)
- (∀x) [P(x)]
- (∃x) [P(x)]
- (∀x,y)[P(x) v P(y)] ^ ~P(z)
- $(\forall x)[^{P}(x)] \rightarrow (\exists y) [P(y)] ^{P}(3.7)$

Interpretations

In predicate logic an "Interpretation" is an assignment of meaning to the predicate symbols and a choice of domain(s). Consider:

(∀x)(∃y) [P(x,y)]

- What does this say in English?
- Discuss each assignment for P, below, over each of the domains \mathbb{R} , \mathbb{Z} , and \mathbb{N} :

P(a, b) means "a + b = 0" P(a, b) means "b > a and there is no element between a and b" P(a, b) means "b < a and there is no element between a and b" P(a, b) means "a * a = b" P(a, b) means "b * b = a"

Rules of inference for quantified statements

Existential Generalization

<u>P(a) for some $a \in D$ </u>

 $\therefore (\exists x \in D) [P(x)]$

Universal Instantiation

 $(\forall x \in D) [P(x)]$

 \therefore P(a) for any particular a \in D

Universal Generalization

Universal Generalization

<u>P(a) for some $a \in D$ (selected arbitrarily)</u>

 $\therefore (\forall x \in D) [P(x)]$

Is this proof valid?	Is this proof valid?	
Let $a \in \mathbb{N}$ (selected arbitrarily)	Let $a \in \mathbb{N}$ such that a is even.	
 P(a) ∴(∀x ∈ ℕ) [P(x)]	 P(a) ∴ (∀x ∈ ℕ) [P(x)]	

Existential Instantiation

Existential Instantiation

 $(\exists x \in D) [P(x)]$

 \therefore P(a) for some $a \in D$

Is proof valid?

Let a = 7 ... (∃x ∈ D) [P(x)] ∴ P(a)

Unit 4 Methods of Proof

Definitions

- \mathbb{N} Natural numbers {0, 1, 2, 3...}
- \mathbb{Z} Integers {...-3, -2, -1, 0, 1, 2, 3...}
- \mathbb{R} Real numbers

 \mathbb{Q} – Rational numbers (Real numbers than can be expressed as the quotient of two integers, with a non-zero denominator)

What are "irrational numbers"?

What do these mean?

- ℝ+
- Q⁻
- N>2
- Zeven
- Nprime

Closure

We say a set (D) is **closed** under an binary operation (*) if:

 $(\forall a,b \in D)[a*b \in D]$

Which operations are closed in which domains?

	\mathbb{R}^+	\mathbb{Q}	Z	ℕ >0
+				
-				
*				
/				
exponentiation				

Number Theory

The study of the properties of *Natural Numbers* (\mathbb{N}) is called **Number Theory**.

- Number Theory is the perfect environment for learning to write proofs!
- Number Theory is also intertwined with Computer Science
 - Cryptography
 - Data compression
 - Hash functions
 - Random number generation
 - Network protocols
 - "...virtually every theorem in elementary number theory arises in a natural, motivated way in connection with the problem of making computers do high-speed numerical calculations."
 - Donald Knuth

Divisibility, Multiples and Factors

```
Let a,b,c \in \mathbb{N} such that a * b = c.
```

We may say (all of these are equivalent):

```
"b is a factor of c"
"b is a divisor of c"
"b divides c"
"c is a multiple of b"
"c is divisible by b"
```

Even and Odd

We say $n \in \mathbb{Z}$ is **even** when n is a multiple of 2.

More formally:

 $n \in \mathbb{Z}$ is even if and only if $(\exists k \in \mathbb{Z}) [n = 2k]$

We say $n \in \mathbb{Z}$ is **odd** when n is not even.

Alternatively:

 $n \in \mathbb{Z}$ is odd if and only if $(\exists k \in \mathbb{Z}) [n = 2k + 1]$