Announcements

• Homework #3 due tomorrow

• Midterm #1 is on March 12th (Two weeks.)

Recall: Fundamental Theorem of Arithmetic (Unique Prime Factorization Theorem)

Theorem: For any $n \in \mathbb{N}$, n can be expressed as the product of primes in a **unique** way.

In proofs, we will write:

$$n = p_1^{e1} \times p_2^{e2} \times p_3^{e3} \times \dots \times p_k^{ek}$$

Examples

Proofs using the F.T.O.A.

- Claim: $(\forall a \in \mathbb{N}^+)(\forall q \in \mathbb{N}^{prime}) [q|a^2 \rightarrow q|a]$
- Claim: $\sqrt{3} \notin Q$

Modular Congruence

- "a mod n" represents the remainder when a is divided by n (Similar to Java: a%n, but different when a is negative)
- $a = b \pmod{n}$ means: $a \mod d = b \mod n$
- Better notation:
 - a ≡_n b
- We say "a is congruent to b mod n"
- Examples.

Equivalently...

Claim: For all a, $b \in \mathbb{N}$, the following are equivalent:

- 1. a ≡_n b
- 2. n|(a b)
- 3. $(\exists k \in Z) [a = b + kn]$

(We will prove this later, but let's talk about it...)

Modular Arithmetic Theorem

Theorem: Let a, b, c, d, $n \in Z$, and n > 1. Suppose $a \equiv_n c$ and $b \equiv_n d$. Then: 1. $(a + b) \equiv_n (c + d)$ 2. $(a - b) \equiv_n (c - d)$ 3. $ab \equiv_n cd$ 4. $a^m \equiv_n c^m$ for all integers m

Using the Modular Arithmetic Theorem

• Examples.

• Claim: For all natural numbers, n: n is divisible by 3 if and only if the sum of the digits of n is divisible by 3.