Announcements

- Homework #10 is due Friday.
- Exam #2 is on Tuesday 4/30.

Relations

A **relation** (among sets) is a subset of their Cartesian product.

Relations can involve any number of sets, but frequently they are **binary** (two sets).

Examples of Binary Relations

Let S = {Students at Maryland}

Let F = {faculty members at Maryland}

Define relation R on $S \times F$ by:

 $R = \{ \langle x, y \rangle \in S \times F : x \text{ has been in a class taught by } y \}$

Notation:

aRb means $\langle a,b \rangle \in R$

Examples of Binary Relations

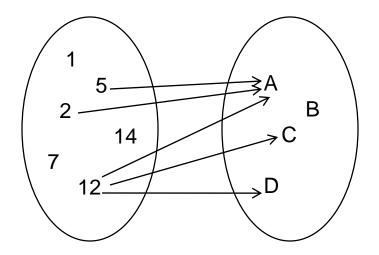
 Any predicate with two free variables (over fixed domains) defines a binary relation over the same domains:

For all
$$x \in A$$
, $y \in B$
xRy iff $P(x, y)$ is true

- \bullet < is a binary relation on $\mathbb{R} \times \mathbb{R}$, or $\mathbb{Z} \times \mathbb{Z}$, etc.
- Any function can be thought of as a binary relation
 (Can any binary relation be thought of as a function?)
- = can be thought of as a (simple) binary relation over any domain

Ways to represent Binary Relations

Arrow Diagrams

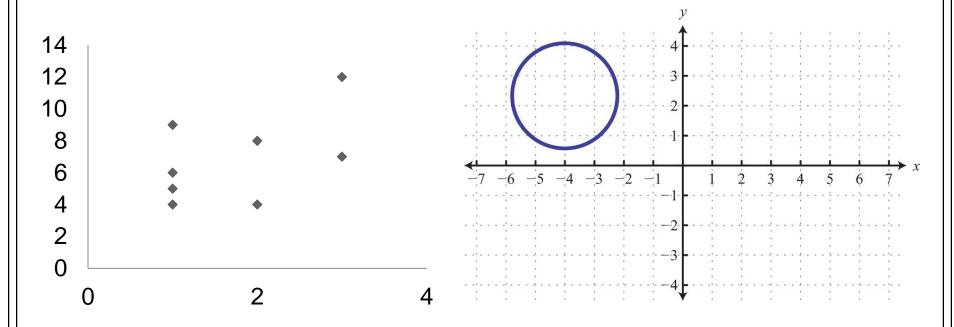


Set Notation

$$R = \{<5,A>, <2,A>, <12,A>, <12,C>, <12,D>\}$$

Ways to represent Binary Relations

Graphs



Ways to represent Binary Relations

Matrix Representation

 $R = \{(2,1),(3,1),(3,2)\}$ could also be represented as:

$$M_R = \begin{bmatrix} 1 & 2 \\ 1 & 0 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{bmatrix}$$

Ternary Relations

Examples:

• Let $R \subseteq \mathbb{Z} \times \mathbb{Z} \times \mathbb{N}$ be defined by:

 $\langle a, b, c \rangle \in R$ if and only if $a \equiv_c b$

Alternate notation (like a predicate):

R(a, b, c) holds if and only if $a \equiv_c b$.

• Let $R \subseteq \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ be defined by:

<a, b, c> \in R iff there could be a triangle with sides of lengths a, b and c.

Unary Relations

What would a **Unary Relation** look like?

Examples?

n-ary Relations

Relations can involve any number of sets.

Example:

Let n∈N+

Define $R \subseteq \mathbb{R}^n$ ($\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R}$) as:

$$< x_1, x_2, x_3, ..., x_n > \in R$$
 if and only if $\sqrt{x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2} \le 1$

What is the geometric interpretation for...

```
n=2?
```

$$n=3$$
?

$$n=1$$
?

$$n = 4???$$

Properties of Binary Relations

Reflexive $(\forall a \in A) [aRa]$

Irreflexive $(\forall a \in A) [aRa]$

Symmetric $(\forall a, b \in A) [aRb \rightarrow bRa]$

Antisymmetric $(\forall a, b \in A) [aRb \land bRa \rightarrow a = b]$

Asymmetric $(\forall a, b \in A) [aRb \rightarrow bRa]$

Non-symmetric $(\forall a, b \in A) [a \neq b \rightarrow (aRb \leftrightarrow bRa)]$

Transitive $(\forall a, b, c \in A) [aRb \land bRc \rightarrow aRc]$

Which Properties Hold?

Which of the properties on the previous slide hold for...

- \bullet < over \mathbb{R}
- = over the set {A, B, C}
- R over N such that aRb iff a is a factor of b
- R over \mathbb{N} such that aRb iff $\mathbf{a} \equiv_7 \mathbf{b}$
- R over {students in this class} such that
 aRb iff a considers b to be a friend