CMSC 250

Exam II Review

Topics Covered

Modular Arithmetic Theorem through Counting and Probability

Modular Arithmetic Theorem

Evaluate:

• $(6^{15}+77^{11}) \mod 7$

Quotient-Remainder Theorem

Prove:

Claim: For all natural numbers, n: $5n^2+11n-2$ is not divisible by 3

(Must prove using Q-R Theorem.)

Floor / Ceiling

Claim: If x is not an integer, then floor(x)+ floor(-x) = -1.

Induction

Claim: For all natural numbers, n: $n^2 + n$ is even. (Must prove using induction!)

Induction

For all natural numbers > 0:

A 2^n by 2^n checkerboard with one square removed can always be tiled with right-triominoes. (OK, what's a right-triomino?)

Strong Induction

$$a_0 = 5,$$
 $a_1 = 16,$

For i > 1: $a_i = 7a_{i-1} - 10a_{i-2}$.

Prove: For all natural numbers, n: $a_n = 3(2^n) + 2(5^n)$.

Sets

• Claim: If A, B, and C are sets, then A – (B \cup C) = (A – B) \cap (A – C). (Prove this from the definitions, only).

Know about powersets

Recall: Choosing r elements from n elements

	order matters	order doesn't matter (like a "set")
repetition allowed	$\underbrace{n \times \cdots \times n}_{r \text{ times}} = n^r$	$\binom{n+r-1}{r}$
repetition not allowed	$P(n,r) = \frac{n!}{(n-r)!}$	$\binom{n}{r} = \frac{n!}{(n-r)! r!}$

Probability and Counting

You are playing a card game in which the deck has 10 yellow cards, 10 red cards, 7 blue cards, and 8 green cards.

- 1. You are dealt five cards. How many hands are possible? (A "hand" could be, for example: "1 red, 2 blue, 2 yellow").
- 2. What is the probability that you get 3 red cards and 2 blue cards?

Probability and Counting

1. How many ways can the 9 supreme court justices be seated in a row?

2. If they are seated randomly, what is the probability that Breyer will be seated next to Alito?

Probability and Counting

1. You have 64 crayons. How many ways can you color in the keys of an 88-key piano. (Each key will be a single color)?

2. What is the probability that no two adjacent keys will share the same color?