Announcements

• The final exam is on 5/18 (Saturday) from 4:00PM to 6:00PM in room SKN 0200.

Recall:	Properties of binary relations
Reflexive Irreflexive	$(\forall a \in A) [aRa]$ $(\forall a \in A) [aRa]$
Symmetric Antisymmetric Asymmetric Non-symmetric	$(\forall a, b \in A) [aRb \rightarrow bRa]$ $(\forall a, b \in A) [aRb \wedge bRa \rightarrow a = b]$ $(\forall a, b \in A) [aRb \rightarrow bRa]$ $(\forall a, b \in A) [a \neq b \rightarrow (aRb \leftrightarrow bRa)]$
Transitive	$(\forall a, b, c \in A) [aRb \land bRc \rightarrow aRc]$

Equivalence relations

- A binary relation is an equivalence relation iff it is:
 - reflexive,
 - symmetric, and
 - Transitive

Example:

Let R be the relation over $\mathbb{Z} \times \mathbb{Z}$ defined by:

aRb iff $a \equiv_4 b$

(Let's verify that this is an equivalence relation.)

Equivalence relations

- An equivalence relation forms a *partition* of the elements: All elements that are related to one another are within the same partition.
- These partitions are called equivalence classes
 - [a] = the equivalence class containing a
 - $[a] = \{x \in A \mid xRa\}$

More Equivalence Relations

• Let X = {a,b,c,d,e,f}, and define the following binary relation over X:

$$\label{eq:R} \begin{split} \mathsf{R} &= \{(a,a),(b,b),(c,c),(d,d),(e,e),(f,f),(a,e),(a,d),(d,a),(d,e),\\ &\quad (e,a),(e,d),(b,f),(f,b)\} \end{split}$$

- Let R be a binary relation defined over the 50 states in the U.S. as: aRb iff the names of a and b start with the same letter
- Let R be a binary relation over ℝ defined by: aRb iff sin(a) = sin(b)
- Let f be any function with domain D. Define a binary relation R over D as:

aRb iff f(a)=f(b)

Partial order relation

- R is a **partial order relation** if and only if R is reflexive, antisymmetric, and transitive
- Examples
 - $\geq \text{over } \mathbb{Z}$
 - divisibility over \mathbb{Z}^+
 - \subseteq over any collection of sets

Partial order relation

• Partial orders correspond to "reachability" in *directed* acyclic graphs (DAGs)

Total ordering

A relation, R, is **total** (over S) if for all elements a, b ∈ S: aRb or bRa

A relation is a total order relation if it is:

- Total
- Transitive
- Antisymmetric

Examples:

- $\leq \text{over } \mathbb{R}$
- Lexicographical ordering of English words

From worksheet

 Definition: An infinite set is *countable* if it can be put into 1–1 correspondence with the natural numbers.

- Countable sets are the *smallest* infinite sets.

- Any set that is larger than the natural numbers is said to be *uncountable*.

Continuum Hypothesis

Continuum Hypothesis: There is no set that is *larger* than the Natural Numbers and *smaller* than the reals.

Is this true or false?