
CMSC 330: Organization of
Programming Languages

Administrivia

1CMSC 330 Spring 2019

Welcome to 330. Why Take It?

It's required. Ok ... but there's more

Can you read this?

+/1=throws¬?10000p6

APL 1962 Ken Iverson. Very terse language!
Read right to left:
• Roll 10,000 dice, store in throws, count the # of 1s.

How many lines in Java?

CMSC 330 Spring 2019 2

Course Goals

Understand why there are so many languages
Describe and compare their main features
Choose the right language for the job
Write better code faster
• Code that is shorter, more efficient, with fewer bugs
• In a variety of styles

In short:
• Become a better programmer with a better

understanding of your tools.
CMSC 330 Spring 2019 3

Course Activities
Learn different types of languages
Learn different language features and tradeoffs
• Programming patterns repeat between languages

Study how languages are specified
• Syntax, Semantics — mathematical formalisms

Study how languages are implemented
• Parsing via regular expressions (automata theory)

and context free grammars
• Mechanisms such as closures, tail recursion, lazy

evaluation, garbage collection, …
Language impact on computer security

4CMSC 330 Spring 2019

Syllabus

Dynamic/ Scripting languages (Ruby)
Functional programming (OCaml)
Scoping, type systems, parameter passing
Regular expressions & finite automata
Context-free grammars & parsing
Lambda Calculus
Safe, “zero-cost abstraction” programming (Rust)
Secure programming
Comparing language styles; other topics

5CMSC 330 Spring 2019

Calendar / Course Overview

Tests
• 4 quizzes, 2 midterm exams, 1 final exam

Clicker quizzes
• In class, graded, during the lectures

Projects
• Project 1 – Ruby

• Project 2-4 – OCaml (and parsing, automata)
Ø P2 and P4 are split in two parts

• Project 5 – Rust

• Project 6 – Security

6CMSC 330 Spring 2019

Clickers

Turning Technology subscription is free.
Physical clicker is preferred.
• Clicker device: any of LCD, NXT, or QT2 models
• Phone App: needs wifi

7CMSC 330 Spring 2019

Quiz time!

According to IEEE Spectrum Magazine which is
the “top” programming language of 2018?

A. Java
B. R
C. Python
D. C++

CMSC 330 Spring 2019 8

Quiz time!

According to IEEE Spectrum Magazine which is
the “top” programming language of 2018?

A. Java
B. R
C. Python
D. C++

CMSC 330 Spring 2019 9

Quiz time!

CMSC 330 Spring 2019 10

Discussion Sections
Discussion sections will deepen understanding
of concepts introduced in lecture
• Discussions are smaller, more interactive

Oftentimes discussion section will consist of
programming exercises
• Bring your laptop to discussion
• Be prepared to program: install the language in

question on your laptop, or remote shell into Grace
There will also be be quizzes, and some lecture
material in discussion sections
• Quizzes cover non-programming parts of the class

11CMSC 330 Spring 2019

Project Grading

You have accounts on the Grace cluster
Projects will be graded using the submit server
• Software versions on these machines are canonical

Develop programs on your own machine
• Generally results will be identical on Dept machines
• Your responsibility to ensure programs run correctly

on the grace cluster
See web page for Ruby, OCaml, etc. versions
we use, if you want to install at home
• Or install our Linux VM, which has them all

12CMSC 330 Spring 2019

Rules and Reminders

Use lecture notes as your text
• Supplement with readings, Internet
• You will be responsible for everything in the notes,

even if it is not directly covered in class!
Keep ahead of your work
• Get help as soon as you need it

Ø Office hours, Piazza (email as a last resort)

Don’t disturb other students in class
• Keep cell phones quiet
• No laptops / tablets in class

Ø Prefer hand-written notes (else, sit in back of class)
13CMSC 330 Spring 2019

Academic Integrity

All written work (including projects) must be
done on your own
• Do not copy code from other students
• Do not copy code from the web
• Do not post your code on the web

Cheaters are caught by auto-comparing code
Work together on high-level project questions
• Do not look at/describe another student’s code
• If unsure, ask an instructor!

Work together on practice exam questions

14CMSC 330 Spring 2019

CMSC 330: Organization of
Programming Languages

Overview

15CMSC 330 Spring 2019

Plethora of programming languages

We saw APL. How about

LISP: (defun double (x) (* x 2))

Prolog: size([],0).
size([H|T],N) :-

size(T,N1), N is N1+1.

Ocaml: List.iter
(fun x -> print_string x)

[“hello, ”; s; "!\n”]

Smalltalk: (#(1 2 3 4 5)
select:[:i | i even])

CMSC 330 Spring 2019 16

All Languages Are (kind of) Equivalent

A language is Turing complete if it can compute
any function computable by a Turing Machine
• Church-Turing thesis (1936): Computability by a

Turing Machine defines “effectively computable”

Essentially all general-purpose programming
languages are Turing complete

• I.e., any program can be written in any programming
language

Therefore this course is useless?!
• Learn one programming language, always use it

17CMSC 330 Spring 2019

Studying Programming Languages

Will make you a better programmer
• Programming is a human activity

Ø Features of a language make it easier or harder to program
for a specific application

• Ideas or features from one language translate to, or
are later incorporated by, another
Ø Many �design patterns� in Java are functional programming

techniques

• Using the right programming language or style for a
problem may make programming
Ø Easier, faster, less error-prone

18CMSC 330 Spring 2019

Studying Programming Languages

Become better at learning new languages
• A language not only allows you to express an idea, it

also shapes how you think when conceiving it
Ø There are some fundamental computational paradigms

underlying language designs that take getting used to

• You may need to learn a new (or old) language
Ø Paradigms and fads change quickly in CS

Ø Also, may need to support or extend legacy systems

19CMSC 330 Spring 2019

Changing Language Goals

1950s-60s – Compile programs to execute
efficiently
• Language features based on hardware concepts

Ø Integers, reals, goto statements

• Programmers cheap; machines expensive
Ø Computation was the primary constrained resource
Ø Programs had to be efficient because machines weren’t

• Note: this still happens today, just not as pervasively

20CMSC 330 Spring 2019

Changing Language Goals

Today
• Language features based on design concepts

Ø Encapsulation, records, inheritance, functionality, assertions

• Machines cheap; programmers expensive
Ø Scripting languages are slow(er), but run on fast machines
Ø They’ve become very popular because they ease the

programming process

• The constrained resource changes frequently
Ø Communication, effort, power, privacy, …
Ø Future systems and developers will have to be nimble

21CMSC 330 Spring 2019

Language Attributes to Consider
Syntax
• What a program looks like

Semantics
• What a program means (mathematically)

Paradigm and Pragmatics
• How programs tend to be expressed in the language

Implementation
• How a program executes (on a real machine)

22CMSC 330 Spring 2019

23

Syntax

The keywords, formatting expectations, and
“grammar” for the language
• Differences between languages usually superficial

Ø C / Java if (x == 1) { … } else { … }

Ø Ruby if x == 1 … else … end

Ø OCaml if (x = 1) then … else …

• Differences initially annoying; overcome with experience

Concepts such as regular expressions, context-free
grammars, and parsing handle language syntax

CMSC 330 Spring 2019

24

Semantics

What does a program mean? What does it do?
• Same syntax may have different semantics in different

languages!

Can specify semantics informally (in prose) or
formally (in mathematics)

Physical Equality Structural Equality
Java a == b a.equals(b)
C a == b *a == *b
Ruby a.equal?(b) a == b
OCaml a == b a = b

CMSC 330 Spring 2019

Why Formal Semantics?

Textual language definitions are often
incomplete and ambiguous
• Leads to two different implementations running the

same program and getting a different result!
A formal semantics is basically a mathematical
definition of what programs do
• Benefits: concise, unambiguous, basis for proof

We will consider operational semantics
• Consists of rules that define program execution
• Basis for implementation, and proofs that programs

do what they are supposed to
26CMSC 330 Spring 2019

27

Paradigm

There are many ways to compute something
• Some differences are superficial

Ø For loop vs. while loop

• Some are more fundamental
Ø Recursion vs. looping
Ø Mutation vs. functional update
Ø Manual vs. automatic memory management

Language’s paradigm favors some computing
methods over others. This class:
- Imperative - Resource-controlled (zero-cost)
- Functional - Scripting/dynamic

CMSC 330 Spring 2019

Imperative Languages

Also called procedural or von Neumann
Building blocks are procedures and statements
• Programs that write to memory are the norm

int x = 0;
while (x < y) x = x + 1;

• FORTRAN (1954)
• Pascal (1970)
• C (1971)

28CMSC 330 Spring 2019

Functional (Applicative) Languages

Favors immutability
• Variables are never re-defined
• New variables a function of old ones (exploits recursion)

Functions are higher-order
• Passed as arguments, returned as results

• LISP (1958)
• ML (1973)
• Scheme (1975)
• Haskell (1987)
• OCaml (1987)

29CMSC 330 Spring 2019

OCaml

A mostly-functional language
• Has objects, but won�t discuss (much)
• Developed in 1987 at INRIA in France
• Dialect of ML (1973)

Natural support for pattern matching
• Generalizes switch/if-then-else – very elegant

Has full featured module system
• Much richer than interfaces in Java or headers in C

Includes type inference
• Ensures compile-time type safety, no annotations

30CMSC 330 Spring 2019

A Small OCaml Example

let greet s =
List.iter (fun x -> print_string x)
[“hello, ”; s; "!\n”]

$ ocaml
Objective Caml version 3.12.1

#use "intro.ml";;
val greet : string -> unit = <fun>
greet "world";;
Hello, world!
- : unit = ()

intro.ml:

31CMSC 330 Spring 2019

Dynamic (Scripting) Languages

Rapid prototyping languages for common
tasks

• Traditionally: text processing and system interaction

“Scripting” is a broad genre of languages
• �Base� may be imperative, functional, OO…

Increasing use due to higher-layer abstractions
• Originally for text processing; now, much more

• sh (1971)

• perl (1987)

• Python (1991)
• Ruby (1993)

32

#!/usr/bin/ruby
while line = gets do

csvs = line.split /,/
if(csvs[0] == “330”) then
...

CMSC 330 Spring 2019

Ruby

An imperative, object-oriented scripting
language
• Full object-orientation (even primitives are objects!)
• And functional-style programming paradigms
• Dynamic typing (types hidden, checked at run-time)
• Similar in flavor to other scripting languages (Python)

Created in 1993 by Yukihiro Matsumoto (Matz)
• “Ruby is designed to make programmers happy”

Core of Ruby on Rails web programming
framework (a key to its popularity)

33CMSC 330 Spring 2019

A Small Ruby Example
def greet(s)
3.times { print “Hello, � }
print “#{s}!\n”

end

% irb # you�ll usually use �ruby� instead
irb(main):001:0> require "intro.rb"
=> true
irb(main):002:0> greet("world")
Hello, Hello, Hello, world!
=> nil

intro.rb:

34CMSC 330 Spring 2019

Theme: Software Security

Security is a big issue today
Features of the language can help (or hurt)
• C/C++ lack of memory safety leaves them open for

many vulnerabilities: buffer overruns, use-after-free
errors, data races, etc.

• Type safety is a big help, but so are abstraction and
isolation, to help enforce security policies, and limit
the damage of possible attacks

Secure development requires vigilance
• Do not trust inputs – unanticipated inputs can effect

surprising results! Therefore: verify and sanitize

35CMSC 330 Spring 2019

Zero-cost Abstractions in Rust

A key motivator for writing code in C and C++ is

the low (or zero) cost of the abstractions use

• Data is represented minimally; no metadata required

• Stack-allocated memory can be freed quickly

• Malloc/free maximizes control – no GC or

mechanisms to support it are needed

But no-cost abstractions in C/C++ are insecure

Rust language has safe, zero-cost abstractions

• Type system enforces use of ownership and lifetimes

• Used to build real applications – web browsers, etc.

CMSC 330 Spring 2019 36

Other Language Paradigms

We are not covering them all in 330!

Parallel/concurrent/distributed programming
• Cilk, Fortress, Erlang, MPI (extension), Hadoop

(extension); more on these in CMSC 433

Logic programming
• Prolog, λ-prolog, CLP, Minikanren, Datalog

Object-oriented programming
• Simula, Smalltalk, C++, Java, Scala

Many other languages over the years, adopting
various styles

CMSC 330 Spring 2019 37

38

Defining Paradigm: Elements of PLs

Important features
• Regular expression handling
• Objects

Ø Inheritance

• Closures/code blocks
• Immutability
• Tail recursion
• Pattern matching

Ø Unification

• Abstract types
• Garbage collection

Declarations
• Explicit
• Implicit

Type system
• Static

• Polymorphism
• Inference

• Dynamic
• Type safety

CMSC 330 Spring 2019

Implementation

How do we implement a programming
language?

• Put another way: How do we get program P in
some language L to run?

Two broad ways
• Compilation
• Interpretation

39CMSC 330 Spring 2019

Compilation

Source program translated (�compiled�) to
another language
• Traditionally: directly executable machine code
• Generating code from a higher level “interface” is

also common (e.g., JSON, RPC IDL)

def greet(s)
print("Hello, �)
print(s)
print("!\n�)

end

11230452
23230456
01200312
…

�world� �Hello, world!�

40CMSC 330 Spring 2019

Interpretation

Interpreter executes each instruction in source
program one step at a time
• No separate executable

def greet(s)
print("Hello, �)
print(s)
print("!\n�)

end

�world�

�Hello, world!�

41CMSC 330 Spring 2019

Architecture of Compilers, Interpreters

42

Front End

Intermediate
Representation

Back End

Parser Static
AnalyzerSource

Compiler / Interpreter

CMSC 330 Spring 2019

Front Ends and Back Ends
Front ends handle syntax
• Parser converts source code into intermediate format

(�parse tree�) reflecting program structure
• Static analyzer checks parse tree for errors (e.g.,

erroneous use of types), may also modify it
Ø What goes into static analyzer is language-dependent!

Back ends handle semantics
• Compiler: back end (�code generator�) translates

intermediate representation into �object language�
• Interpreter: back end executes intermediate

representation directly

43CMSC 330 Spring 2019

Compiler or Intepreter?

gcc
• Compiler – C code translated to object code, executed

directly on hardware (as a separate step)
javac
• Compiler – Java source code translated to Java byte

code
java
• Interpreter – Java byte code executed by virtual machine

sh/csh/tcsh/bash
• Interpreter – commands executed by shell program

44CMSC 330 Spring 2019

Compilers vs. Interpreters
Compilers
• Generated code more efficient
• �Heavy�

Interpreters
• Great for debugging
• Fast start time (no compilation), slow execution time

In practice
• “General-purpose” programming languages (e.g., C,

Java) are often compiled, although debuggers
provide interpreter support

• Scripting languages languages are often interpreted,
even if general-purpose

45CMSC 330 Spring 2019

Summary

Programming languages vary in their
• Syntax
• Semantics
• Style/paradigm and pragmatics
• Implementation

They are designed for different purposes
• And goals change as the computing landscape

changes, e.g., as programmer time becomes more
valuable than machine time

Ideas from one language appear in others

50CMSC 330 Spring 2019

