CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps

The story so far, and what's next

- Goal: Develop an algorithm that determines whether a string s is matched by regex R
 - I.e., whether s is a member of R's language
- Approach: Convert R to a finite automaton FA and see whether s is accepted by FA
 - Details: Convert R to a nondeterministic FA (NFA), which we then convert to a deterministic FA (DFA),
 - > which enjoys a fast acceptance algorithm

Two Types of Finite Automata

- Deterministic Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - > Easy to implement acceptance check
 - All examples so far
- Nondeterministic Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
 - > But more expensive to test whether a string matches

Comparing DFAs and NFAs

NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
 - I.e., transition function must be a valid function
 - DFA is a special case of NFA

Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

- DFA transition must be labeled with symbol
 - DFA is a special case of NFA

DFA for (a|b)*abb

NFA for (a|b)*abb

- ▶ ba
 - Has paths to either S0 or S1
 - Neither is final, so rejected
- babaabb
 - Has paths to different states
 - One path leads to S3, so accepts string

NFA for (ab|aba)*

- aba
 - Has paths to states S0, S1
- ababa
 - Has paths to S0, S1
 - Need to use ε-transition

Comparing NFA and DFA for (ab|aba)*

Quiz 1: Which DFA matches this regexp?

b(b|a+b?)

D. None of the above

Quiz 1: Which DFA matches this regexp?

b(b|a+b?)

D. None of the above

Formal Definition

- A deterministic finite automaton (DFA) is a 5-tuple (Σ, Q, q₀, F, δ) where
 - Σ is an alphabet
 - Q is a nonempty set of states
 - $q_0 \in Q$ is the start state
 - F ⊆ Q is the set of final states
 - $\delta: Q \times \Sigma \to Q$ specifies the DFA's transitions
 - \triangleright What's this definition saying that δ is?
- A DFA accepts s if it stops at a final state on s

Formal Definition: Example

•
$$\Sigma = \{0, 1\}$$

•
$$Q = \{S0, S1\}$$

•
$$q_0 = S0$$

	symbol		
_	δ	0	1
input state	S0	S0	S1
input	S1	S0	S1

or as $\{(S0,0,S0),(S0,1,S1),(S1,0,S0),(S1,1,S1)\}$

Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA


```
cur state = 0;
while (1) {
  symbol = getchar();
  switch (cur state) {
    case 0: switch (symbol) {
              case '0': cur state = 0; break;
              case '1': cur state = 1; break;
              case '\n': printf("rejected\n"); return 0;
                        printf("rejected\n"); return 0;
              default:
            break:
    case 1: switch (symbol) {
              case '0': cur state = 0; break;
              case '1': cur state = 1; break;
              case '\n': printf("accepted\n"); return 1;
                        printf("rejected\n"); return 0;
              default:
            break:
    default: printf("unknown state; I'm confused\n");
             break:
```

Implementing DFAs (generic)

More generally, use generic table-driven DFA

```
given components (\Sigma, Q, q_0, F, \delta) of a DFA: let q = q_0 while (there exists another symbol \sigma of the input string) q := \delta(q, \sigma); if q \in F then accept else reject
```

- q is just an integer
- Represent δ using arrays or hash tables
- Represent F as a set

CMSC 330 15

Nondeterministic Finite Automata (NFA)

- ► An *NFA* is a 5-tuple (Σ , Q, q_0 , F, δ) where
 - Σ, Q, q0, F as with DFAs
 - $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ specifies the NFA's transitions

An NFA accepts s if there is at least one path via s from the NFA's start state to a final state

NFA Acceptance Algorithm (Sketch)

- When NFA processes a string s
 - NFA must keep track of several "current states"
 - > Due to multiple transitions with same label, and ε-transitions
 - If any current state is final when done then accept s
- Example
 - After processing "a"
 - > NFA may be in states

S1

S2

S3

- Since S3 is final, s is accepted
- Algorithm is slow, space-inefficient; prefer DFAs!

CMSC 330

Relating REs to DFAs and NFAs

Regular expressions, NFAs, and DFAs accept the same languages! Can convert between them

NB. Both *transform* and *reduce* are historical terms; they mean "convert"

Reducing Regular Expressions to NFAs

- Goal: Given regular expression *A*, construct NFA: $\langle A \rangle = (\Sigma, Q, q_0, F, \delta)$
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: |F| = 1 in our NFAs
 - > Recall F = set of final states
- Will define <A> for base cases: σ, ε, Ø
 - Where σ is a symbol in Σ
- ▶ And for inductive cases: AB, A|B, A*

Reducing Regular Expressions to NFAs

Base case: σ

Recall: NFA is $(\Sigma, Q, q_0, F, \delta)$ where Σ is the alphabet

Q is set of states

q₀ is starting state

F is set of final states

δ is transition relation

 $<\sigma> = ({\sigma}, {S0, S1}, {S0, {S1}, {(S0, \sigma, S1)}})$

Reduction

Base case: ε

$$\langle \epsilon \rangle = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset)$$

Base case: Ø

$$<\emptyset> = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset)$$

Reduction: Concatenation

▶ Induction: AB

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$

Reduction: Concatenation

▶ Induction: AB

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $\langle AB \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \epsilon, q_B)\})$

Reduction: Union

► Induction: A|B

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$

Reduction: Union

▶ Induction: A|B

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $\langle A|B \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\}, \delta_A \cup \delta_B \cup \{(S0,\epsilon,q_A), (S0,\epsilon,q_B), (f_A,\epsilon,S1), (f_B,\epsilon,S1)\})$

Reduction: Closure

▶ Induction: A*

• $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$

Reduction: Closure

▶ Induction: A*

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<A^*> = (\Sigma_A, Q_A \cup \{S0,S1\}, S0, \{S1\},$ $\delta_A \cup \{(f_A,\epsilon,S1), (S0,\epsilon,q_A), (S0,\epsilon,S1), (S1,\epsilon,S0)\})$

Quiz 2: Which NFA matches a*?

Quiz 2: Which NFA matches a*?

Quiz 3: Which NFA matches a b*?

Quiz 3: Which NFA matches a b*?

Reduction Complexity

▶ Given a regular expression A of size n...

```
Size = # of symbols + # of operations
```

- How many states does <A> have?
 - Two added for each |, two added for each *
 - O(n)
 - That's pretty good!

Reducing NFA to DFA

Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states
- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA "current states"
- Example

CMSC 330

Algorithm for Reducing NFA to DFA

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states
- Algorithm
 - Input
 - \rightarrow NFA (Σ , Q, q₀, F_n, δ)
 - Output
 - ightharpoonup DFA (Σ , R, r₀, F_d, δ)
 - Using two subroutines
 - \succ ϵ -closure(δ , p) (and ϵ -closure(δ , Q))
 - \rightarrow move(δ , p, σ) (and move(δ , Q, σ))
 - (where p is an NFA state)

ε-transitions and ε-closure

- We say p [€] q
 - If it is possible to go from state p to state q by taking only ε-transitions in δ
 - If \exists p, p₁, p₂, ... p_n, q \in Q such that \triangleright {p, ϵ ,p₁} \in δ , {p₁, ϵ ,p₂} \in δ , ... , {p_n, ϵ ,q} \in δ
- ε-closure(δ, p)
 - Set of states reachable from p using ε-transitions alone
 - > Set of states q such that p $\stackrel{\epsilon}{\longrightarrow}$ q according to δ
 - > ϵ -closure(δ , p) = {q | p $\stackrel{\epsilon}{\rightarrow}$ q in δ }
 - > ε-closure(δ, Q) = { q | p ∈ Q, $p \xrightarrow{\epsilon}$ q in δ }
 - Notes
 - ε-closure(δ, p) always includes p
 - > We write ε-closure(p) or ε-closure(Q) when δ is clear from context

CMSC 330

ε-closure: Example 1

Following NFA contains

- $p1 \xrightarrow{\epsilon} p2$
- p2 $\stackrel{\varepsilon}{\rightarrow}$ p3
- p1 $\stackrel{\epsilon}{\rightarrow}$ p3
 - > Since p1 $\stackrel{\varepsilon}{\rightarrow}$ p2 and p2 $\stackrel{\varepsilon}{\rightarrow}$ p3

ε-closures

- ϵ -closure(p1) = { p1, p2, p3 }
- ϵ -closure(p2) = { p2, p3 }
- ϵ -closure(p3) = { p3 }
- ϵ -closure({p1, p2}) = {p1, p2, p3} \cup {p2, p3}

ε-closure: Example 2

Following NFA contains

- $p1 \xrightarrow{\epsilon} p3$
- p3 $\stackrel{\varepsilon}{\rightarrow}$ p2
- p1 $\stackrel{\epsilon}{\rightarrow}$ p2
 - > Since p1 $\stackrel{\mathcal{E}}{\rightarrow}$ p3 and p3 $\stackrel{\mathcal{E}}{\rightarrow}$ p2

ε-closures

- ϵ -closure(p1) = { p1, p2, p3 }
- ϵ -closure(p2) = { p2 }
- ϵ -closure(p3) = { p2, p3 }
- ϵ -closure({ p2,p3 }) = { p2 } \cup { p2, p3 }

ε-closure Algorithm: Approach

Input: NFA (Σ, Q, q₀, F_n, δ), State Set R

Output: State Set R'

Algorithm

This algorithm computes a fixed point

ε-closure Algorithm Example

► Calculate ε-closure(δ,{p1})

R R'
{p1} {p1}
{p1, p2}
{p1, p2, p3}
{p1, p2, p3}


```
Let R' = R
Repeat
Let R= R'
Let R' = R \cup {q | p \in R, (p, \epsilon, q) \in \delta}
Until R = R'
```

CMSC 330 Spring 2018 43

Calculating move(p,σ)

- ▶ move(δ ,p, σ)
 - Set of states reachable from p using exactly one transition on symbol σ
 - > Set of states q such that $\{p, \sigma, q\} \in \delta$
 - > move(δ ,p, σ) = { q | {p, σ , q} $\in \delta$ }
 - > move(δ ,Q, σ) = { q | p \in Q, {p, σ , q} \in δ }
 - i.e., can "lift" move() to a set of states Q

Notes:

- \succ move(δ,p,σ) is \emptyset if no transition (p,σ,q) $\in \delta$, for any q
- > We write move(p, σ) or move(R, σ) when δ clear from context

move(p, σ): Example 1

Following NFA

•
$$\Sigma = \{ a, b \}$$

Move

- $move(p1, a) = \{ p2, p3 \}$
- move(p1, b) = \emptyset
- move(p2, a) = Ø
- $move(p2, b) = \{ p3 \}$
- move(p3, a) = \emptyset
- $move(p3, b) = \emptyset$

$$move(\{p1,p2\},b) = \{p3\}$$

move(p, σ): Example 2

Following NFA

•
$$\Sigma = \{ a, b \}$$

Move

- move(p1, a) = { p2 }
- $move(p1, b) = \{ p3 \}$
- $move(p2, a) = \{ p3 \}$
- move(p2, b) = \emptyset
- move(p3, a) = \emptyset
- $move(p3, b) = \emptyset$

 $move(\{p1,p2\},a) = \{p2,p3\}$

NFA → DFA Reduction Algorithm ("subset")

- ▶ Input NFA (Σ , Q, q₀, F_n, δ), Output DFA (Σ , R, r₀, F_d, δ ')
- Algorithm

```
Let r_0 = \varepsilon-closure(\delta, q_0), add it to R
While \exists an unmarked state r \in R
      Mark r
      For each \sigma \in \Sigma
             Let E = move(\delta,r,\sigma)
             Let e = \varepsilon-closure(\delta,E)
             If e ∉ R
                   Let R = R \cup \{e\}
             Let \delta' = \delta' \cup \{r, \sigma, e\}
Let F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}
```

```
// DFA start state
// process DFA state r
// each state visited once
// for each symbol \sigma
// states reached via σ
// states reached via \varepsilon
// if state e is new
// add e to R (unmarked)
// add transition r→e on σ
// final if include state in F<sub>n</sub>
```

• Start = ϵ -closure(δ ,p1) = { {p1,p3} } • R = { {p1,p3} } • r \in R = {p1,p3} • move(δ ,{p1,p3},a) = {p2} • ϵ > e = ϵ -closure(ϵ ,{p2}) = {p2} • R = R ϵ ({p2}} = { {p1,p3}, {p2} } • ϵ > ϵ ' ϵ

NFA → DFA Example 1 (cont.)

- $R = \{ \{p1,p3\}, \{p2\} \}$
- $r \in R = \{p2\}$
- move(δ ,{p2},a) = Ø
- $move(\delta, \{p2\}, b) = \{p3\}$
 - \triangleright e = ε -closure(δ ,{p3}) = {p3}
 - $ightharpoonup R = R \cup \{\{p3\}\} = \{\{p1,p3\}, \{p2\}, \{p3\}\}$
 - > $\delta' = \delta' \cup \{\{p2\}, b, \{p3\}\}\}$

NFA

DFA

NFA → DFA Example 1 (cont.)

- $R = \{ \{p1,p3\}, \{p2\}, \{p3\} \}$
- $r \in R = \{p3\}$
- Move($\{p3\},a$) = Ø
- Move($\{p3\},b$) = Ø
- Mark {p3}, exit loop
- F_d = {{p1,p3}, {p3}}
 Since p3 ∈ F_n
- Done!

NFA

DFA

$$R = \{ \{A\}, \{B,D\}, \{C,D\} \}$$

Quiz 4: Which DFA is equiv to this NFA?

Quiz 4: Which DFA is equiv to this NFA?

Actual Answer

$$R = \{ \{A,E\}, \{B,D,E\}, \{C,D\}, \{E\} \}$$

CMSC 330

55

NFA → DFA Practice

NFA → DFA Practice

Subset Algorithm as a Fixed Point

▶ Input: NFA $(\Sigma, Q, q_0, F, \delta)$

▶ Output: DFA M'

Algorithm

```
Let q_0' = \epsilon-closure(\delta, q_0)
Let F' = \{q_0'\} if q_0' \cap F \neq \emptyset, or \emptyset otherwise
Let M' = (\Sigma, \{q_0'\}, q_0', F', \emptyset) // starting approximation of DFA
Repeat
     Let M = M'
                                                 // current DFA approx
     For each q \in states(M), \sigma \in \Sigma // for each DFA state q and symb \sigma
          Let s = \varepsilon-closure(\delta, move(\delta, q, \sigma)) // new subset from q
          Let F' = \{s\} if s \cap F \neq \emptyset, or \emptyset otherwise, // subset contains final?
          M' = M' \cup (\emptyset, \{s\}, \emptyset, F', \{(q, \sigma, s)\}) // update DFA
Until M' = M
                                                 // reached fixed point
```

CMSC 330 Spring 2018

Redux: NFA to DFA Example 1

- $q_0' = \epsilon$ -closure(δ ,p1) = {p1,p3}
- $F' = \{\{p1,p3\}\}\}$ since $\{p1,p3\} \cap \{p3\} \neq \emptyset$

NFA

• $M' = \{ \sum, \{ \{p1,p3\} \}, \{p1,p3\} \}, \{ \{p1,p3\} \}, \emptyset \}$ Q'
q'
F' δ'

Redux: NFA to DFA Example 1 (cont)

- $M' = \{ \Sigma, \{ \{p1,p3\} \}, \{ \{p1,p3\} \}, \{ \{p1,p3\} \}, \emptyset \} \}$
 - $q = \{p1, p3\}$
 - \bullet a = a
 - $s = \{p2\}$
 - > since move(δ ,{p1, p3},a) = {p2}
 - \triangleright and ε -closure(δ ,{p2}) = {p2}
 - $\mathbf{F}' = \emptyset$
 - \Rightarrow Since $\{p2\} \cap \{p3\} = \emptyset$
 - \rightarrow where s = {p2} and F = {p3}

- $M' = M' \cup (\emptyset, \{\{p2\}\}, \emptyset, \emptyset, \{(\{p1,p3\},a,\{p2\})\})$
- = { Σ , {{p1,p3},{p2}}, {p1,p3}, {{p1,p3}}, {{(p1,p3}}, {((p1,p3),a,{p2}))} }

Redux: NFA to DFA Example 1 (cont)

- $M' = \{ \Sigma, \{ \{S1,S3\}, \{S2\} \}, \{S1,S3\}, \{ \{S1,S3\} \}, \{ (\{S1,S3\},a,\{S2\}) \} \} \}$
 - $q = \{S2\}$
 - a = b
 - $s = \{S3\}$
 - > since move(δ ,{S2},b) = {S3}
 - \triangleright and ϵ -closure(δ ,{S3}) = {S3}
 - $F' = \{\{S3\}\}\}$
 - \Rightarrow Since {S3} \cap {S3} = {S3}
 - where s = {S3} and F = {S3}
- M' = M' ∪
 - (Ø, {{S3}}, Ø, {{S3}}, {({S2},b,{S3})})

Analyzing the Reduction

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with n states, DFA may have 2ⁿ states
 - > Since a set with n items may have 2ⁿ subsets
 - Corollary
 - > Reducing a NFA with n states may be O(2ⁿ)

Recap: Matching a Regexp R

- ▶ Given R, construct NFA. Takes time O(R)
- ▶ Convert NFA to DFA. Takes time $O(2^{|R|})$
 - But usually not the worst case in practice
- Use DFA to accept/reject string s
 - Assume we can compute $\delta(q,\sigma)$ in constant time
 - Then time to process s is O(|s|)
 - Can't get much faster!
- Constructing the DFA is a one-time cost
 - But then processing strings is fast

Closing the Loop: Reducing DFA to RE

Reducing DFAs to REs

General idea

- Remove states one by one, labeling transitions with regular expressions
- When two states are left (start and final), the transition label is the regular expression for the DFA

DFA to RE example

Language over $\Sigma = \{0,1\}$ such that every string is a multiple of 3 in binary

$$(0 + 1(0 1^{*} 0)1)^{*}$$

Other Topics

- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA

Minimizing DFAs

- Every regular language is recognizable by a unique minimum-state DFA
 - Ignoring the particular names of states
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language

71

J. Hopcroft, "An n log n algorithm for minimizing states in a finite automaton," 1971

Minimizing DFA: Hopcroft Reduction

Intuition

- Look to distinguish states from each other
 - > End up in different accept / non-accept state with identical input

Algorithm

- Construct initial partition
 - Accepting & non-accepting states
- Iteratively split partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
- Update transitions & remove dead states

Splitting Partitions

- No need to split partition {S,T,U,V}
 - All transitions on a lead to identical partition P2
 - Even though transitions on a lead to different states

Splitting Partitions (cont.)

- Need to split partition {S,T,U} into {S,T}, {U}
 - Transitions on a from S,T lead to partition P2
 - Transition on a from U lead to partition P3

Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition {S,T,U}
 - After splitting partition {X,Y} into {X}, {Y} we need to split partition {S,T,U} into {S,T}, {U}

DFA

Initial partitions

Split partition

DFA

- Accept { R }
- Reject { S, T }
- Split partition? → Not required, minimization done

 - $move(S,a) = T \in P2$ $move(S,b) = R \in P1$
 - $move(T,a) = T \in P2$ $move(T,b) = R \in P1$

DFA

- Initial partitions
 - Accept {R}
 - Reject { S, T }
- = P1
- = P2
- Split partition? → Yes, different partitions for B

 - $move(S,a) = T \in P2$ $move(S,b) = T \in P2$
 - $move(T,a) = T \in P2$ $move(T,b) = R \in P1$

DFA

already

minimal

Complement of DFA

- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA

$$> \Sigma = \{a,b\}$$

Complement of DFA

- Algorithm
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state
 & every non-accepting state to an accepting state
- Note this only works with DFAs
 - Why not with NFAs?

Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA
- Equivalence of RE, NFA, DFA
 - RE → NFA
 - Concatenation, union, closure
 - NFA → DFA
 - > ε-closure & subset algorithm
- DFA
 - Minimization, complementation