CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps
The story so far, and what’s next

- Goal: Develop an algorithm that determines whether a string s is matched by regex R
 - I.e., whether s is a member of R’s language

- Approach: Convert R to a finite automaton FA and see whether s is accepted by FA
 - Details: Convert R to a nondeterministic FA (NFA), which we then convert to a deterministic FA (DFA),
 - which enjoys a fast acceptance algorithm
Two Types of Finite Automata

- **Deterministic** Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - Easy to implement acceptance check
 - All examples so far

- **Nondeterministic** Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
 - But more expensive to test whether a string matches
Comparing DFAs and NFAs

- NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
 - I.e., transition function must be a valid function
 - DFA is a special case of NFA
Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

![ε-transition diagram]

- DFA transition must be labeled with symbol
 - DFA is a special case of NFA
DFA for \((a|b)^*abb\)
NFA for \((a\lor b)^*abb\)

- **ba**
 - Has paths to either S0 or S1
 - Neither is final, so rejected
- **babaabb**
 - Has paths to different states
 - One path leads to S3, so accepts string
NFA for \((ab|aba)^*\)

- \(aba\)
 - Has paths to states \(S0, S1\)

- \(ababa\)
 - Has paths to \(S0, S1\)
 - Need to use \(\varepsilon\)-transition
Comparing NFA and DFA for \((ab|aba)^*\)
Quiz 1: Which DFA matches this regexp?

\[b (b | a+b?) \]

A.

B.

C.

D. None of the above
Quiz 1: Which DFA matches this regexp?

\[b(b | a+b?) \]

A.

B.

C.

D. None of the above
Formal Definition

- A deterministic finite automaton (DFA) is a 5-tuple $(\Sigma, Q, q_0, F, \delta)$ where
 - Σ is an alphabet
 - Q is a nonempty set of states
 - $q_0 \in Q$ is the start state
 - $F \subseteq Q$ is the set of final states
 - $\delta : Q \times \Sigma \rightarrow Q$ specifies the DFA's transitions
 - What's this definition saying that δ is?
- A DFA accepts s if it stops at a final state on s
Formal Definition: Example

- $\Sigma = \{0, 1\}$
- $Q = \{S0, S1\}$
- $q_0 = S0$
- $F = \{S1\}$

- δ

<table>
<thead>
<tr>
<th>symbol</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>S0</td>
<td>S1</td>
</tr>
<tr>
<td>S1</td>
<td>S0</td>
<td>S1</td>
</tr>
</tbody>
</table>

or as \{ (S0,0,S0),(S0,1,S1),(S1,0,S0),(S1,1,S1) \}
Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA

```c
cur_state = 0;
while (1) {
    symbol = getchar();
    switch (cur_state) {
        case 0: switch (symbol) {
                    case '0': cur_state = 0; break;
                    case '1': cur_state = 1; break;
                    case '\n': printf("rejected\n"); return 0;
                    default: printf("rejected\n"); return 0;
                }
        break;
        case 1: switch (symbol) {
                    case '0': cur_state = 0; break;
                    case '1': cur_state = 1; break;
                    case '\n': printf("accepted\n"); return 1;
                    default: printf("rejected\n"); return 0;
                }
        break;
    }
    printf("unknown state; I'm confused\n");
    break;
}
```

It's easy to build a program which mimics a DFA
Implementing DFAs (generic)

More generally, use generic table-driven DFA

given components \((\Sigma, Q, q_0, F, \delta)\) of a DFA:

let \(q = q_0\)
while (there exists another symbol \(\sigma\) of the input string)
 \(q := \delta(q, \sigma);\)
if \(q \in F\) then
 accept
else reject

• \(q\) is just an integer
• Represent \(\delta\) using arrays or hash tables
• Represent \(F\) as a set
Nondeterministic Finite Automata (NFA)

- An *NFA* is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma, Q, q_0, F\) as with DFAs
 - \(\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q\) specifies the NFA's transitions

Example

- \(\Sigma = \{a\}\)
- \(Q = \{S1, S2, S3\}\)
- \(q_0 = S1\)
- \(F = \{S3\}\)
- \(\delta = \{(S1,a,S1), (S1,a,S2), (S2,\epsilon,S3)\}\)

- An NFA accepts *s* if there is at least one path via *s* from the NFA’s start state to a final state
NFA Acceptance Algorithm (Sketch)

- When NFA processes a string s
 - NFA must keep track of several “current states”
 - Due to multiple transitions with same label, and ε-transitions
 - If any current state is final when done then accept s

- Example
 - After processing “a”
 - NFA may be in states
 - S1
 - S2
 - S3
 - Since S3 is final, s is accepted

- Algorithm is slow, space-inefficient; prefer DFAs!
Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages! *Can convert between them*

NB. Both *transform* and *reduce* are historical terms; they mean “convert”
Reducing Regular Expressions to NFAs

- Goal: Given regular expression A, construct NFA: $<A> = (\Sigma, Q, q_0, F, \delta)$
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: $|F| = 1$ in our NFAs
 - Recall F = set of final states

- Will define $<A>$ for base cases: $\sigma, \varepsilon, \emptyset$
 - Where σ is a symbol in Σ
- And for inductive cases: $AB, A|B, A^*$
Reducing Regular Expressions to NFAs

- **Base case:** σ

$<\sigma> = (\{\sigma\}, \{S0, S1\}, S0, \{S1\}, \{(S0, \sigma, S1)\})$

Recall: NFA is $(\Sigma, Q, q_0, F, \delta)$ where
- Σ is the alphabet
- Q is set of states
- q_0 is starting state
- F is set of final states
- δ is transition relation
Reduction

- Base case: ε

 $<\varepsilon> = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset)$

- Base case: \emptyset

 $<\emptyset> = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset)$
Reduction: Concatenation

Induction: \(AB \)

\[
\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)
\]

\[
\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)
\]
Reduction: Concatenation

- Induction: AB

\[
\begin{align*}
\langle A \rangle &= (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \\
\langle B \rangle &= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B) \\
\langle AB \rangle &= (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \varepsilon, q_B)\})
\end{align*}
\]
Reduction: Union

Induction: \(A | B \)

- \(<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \)
- \(= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B) \)
Reduction: Union

Induction: \(A|B \)

- \(<A> = (\Sigma_A, Q_A, q_A, \{ f_A \}, \delta_A) \)
- \(= (\Sigma_B, Q_B, q_B, \{ f_B \}, \delta_B) \)
- \(<A|B> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\}, \delta_A \cup \delta_B \cup \{(S0,\epsilon,q_A), (S0,\epsilon,q_B), (f_A,\epsilon,S1), (f_B,\epsilon,S1)\}) \)
Reduction: Closure

Induction: \(A^*\)

\[<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)\]
Reduction: Closure

Induction: A^*

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<A^*> = (\Sigma_A, Q_A \cup \{S0, S1\}, S0, \{S1\}$,
 $\delta_A \cup \{(f_A, \varepsilon, S1), (S0, \varepsilon, q_A), (S0, \varepsilon, S1), (S1, \varepsilon, S0)\}$)
Quiz 2: Which NFA matches a^*?
Quiz 2: Which NFA matches a^*?
Quiz 3: Which NFA matches $a|b^*$?
Quiz 3: Which NFA matches $a|b^*$?
Reduction Complexity

- Given a regular expression A of size n...

 Size = # of symbols + # of operations

- How many states does $<A>$ have?
 - Two added for each \mid, two added for each \ast
 - $O(n)$
 - That’s pretty good!
Reducing NFA to DFA
Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states

- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA “current states”

- Example
Algorithm for Reducing NFA to DFA

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states

- Algorithm
 - Input
 - NFA (Σ, Q, q_0, F_n, δ)
 - Output
 - DFA (Σ, R, r_0, F_d, δ)
 - Using two subroutines
 - ε-closure(δ, p) (and ε-closure(δ, Q))
 - move(δ, p, σ) (and move(δ, Q, σ))
 - (where p is an NFA state)
ε-transitions and ε-closure

- We say \(p \xrightarrow{\varepsilon} q \)
 - If it is possible to go from state \(p \) to state \(q \) by taking only \(\varepsilon \)-transitions in \(\delta \)
 - If \(\exists \ p, p_1, p_2, \ldots, p_n, q \in Q \) such that
 - \(\{p, \varepsilon, p_1\} \in \delta \)
 - \(\{p_1, \varepsilon, p_2\} \in \delta \)
 - \(\ldots \)
 - \(\{p_n, \varepsilon, q\} \in \delta \)

- **ε-closure(\(\delta \), \(p \))**
 - Set of states reachable from \(p \) using \(\varepsilon \)-transitions alone
 - Set of states \(q \) such that \(p \xrightarrow{\varepsilon} q \) according to \(\delta \)
 - \(\varepsilon \)-closure(\(\delta \), \(p \)) = \{ \(q \mid p \xrightarrow{\varepsilon} q \) in \(\delta \) \}
 - \(\varepsilon \)-closure(\(\delta \), \(Q \)) = \{ \(q \mid p \in Q, p \xrightarrow{\varepsilon} q \) in \(\delta \) \}
 - Notes
 - \(\varepsilon \)-closure(\(\delta \), \(p \)) always includes \(p \)
 - We write \(\varepsilon \)-closure(\(p \)) or \(\varepsilon \)-closure(\(Q \)) when \(\delta \) is clear from context
ε-closure: Example 1

Following NFA contains

• p₁ $\xrightarrow{\varepsilon}$ p₂
• p₂ $\xrightarrow{\varepsilon}$ p₃
• p₁ $\xrightarrow{\varepsilon}$ p₃

➢ Since p₁ $\xrightarrow{\varepsilon}$ p₂ and p₂ $\xrightarrow{\varepsilon}$ p₃

ε-closures

• ε-closure(p₁) = { p₁, p₂, p₃ }
• ε-closure(p₂) = { p₂, p₃ }
• ε-closure(p₃) = { p₃ }
• ε-closure({ p₁, p₂ }) = { p₁, p₂, p₃ } \cup { p₂, p₃ }
\(\varepsilon \)-closure: Example 2

- Following NFA contains
 - \(p_1 \xrightarrow{\varepsilon} p_3 \)
 - \(p_3 \xrightarrow{\varepsilon} p_2 \)
 - \(p_1 \xrightarrow{\varepsilon} p_2 \)
 - Since \(p_1 \xrightarrow{\varepsilon} p_3 \) and \(p_3 \xrightarrow{\varepsilon} p_2 \)

- \(\varepsilon \)-closures
 - \(\varepsilon \)-closure(\(p_1 \)) = \{ \(p_1, p_2, p_3 \) \}
 - \(\varepsilon \)-closure(\(p_2 \)) = \{ \(p_2 \) \}
 - \(\varepsilon \)-closure(\(p_3 \)) = \{ \(p_2, p_3 \) \}
 - \(\varepsilon \)-closure(\{ \(p_2, p_3 \) \}) = \{ \(p_2 \) \} \cup \{ \(p_2, p_3 \) \}
ε-closure Algorithm: Approach

Input: NFA (Σ, Q, q₀, F_n, δ), State Set R
Output: State Set R’

Algorithm

Let R’ = R // start states

Repeat
Let R = R’ // continue from previous
Let R’ = R ∪ {q | p ∈ R, (p, ε, q) ∈ δ} // new ε-reachable states

Until R = R’ // stop when no new states

This algorithm computes a fixed point
ε-closure Algorithm Example

Calculate \(\varepsilon\)-closure(\(\delta \),\{p1\})

\[
\begin{align*}
R & \quad R' \\
\{p1\} & \quad \{p1\} \\
\{p1\} & \quad \{p1, p2\} \\
\{p1, p2\} & \quad \{p1, p2, p3\} \\
\{p1, p2, p3\} & \quad \{p1, p2, p3\}
\end{align*}
\]

Let \(R' = R \)
Repeat
Let \(R = R' \)
Let \(R' = R \cup \{ q \mid p \in R, (p, \varepsilon, q) \in \delta \} \)
Until \(R = R' \)
Calculating move(p,σ)

- **move(δ,p,σ)**
 - Set of states reachable from p using exactly one transition on symbol σ
 - Set of states q such that \(\{p, σ, q\} \in δ \)
 - \(move(δ,p,σ) = \{ q \mid \{p, σ, q\} \in δ \} \)
 - \(move(δ,Q,σ) = \{ q \mid p \in Q, \{p, σ, q\} \in δ \} \)
 - i.e., can “lift” move() to a set of states Q

- **Notes:**
 - \(move(δ,p,σ) \) is \(\emptyset \) if no transition \((p,σ,q) \in δ \), for any q
 - We write \(move(p,σ) \) or \(move(R,σ) \) when \(δ \) clear from context
move(p, σ) : Example 1

- Following NFA
 - \(\Sigma = \{ a, b \} \)

- Move
 - move(p1, a) = \{ p2, p3 \}
 - move(p1, b) = \emptyset
 - move(p2, a) = \emptyset
 - move(p2, b) = \{ p3 \}
 - move(p3, a) = \emptyset
 - move(p3, b) = \emptyset

move({p1, p2}, b) = \{ p3 \}
move(p, σ) : Example 2

- Following NFA
 - \(\Sigma = \{ a, b \} \)

- Move
 - move(p1, a) = \{ p2 \}
 - move(p1, b) = \{ p3 \}
 - move(p2, a) = \{ p3 \}
 - move(p2, b) = \emptyset
 - move(p3, a) = \emptyset
 - move(p3, b) = \emptyset

```
move({p1,p2},a) = \{p2,p3\}
```
NFA → DFA Reduction Algorithm (“subset”)

Input NFA (Σ, Q, q₀, Fₙ, δ), Output DFA (Σ, R, r₀, Fₜ, δ’)

Algorithm

Let r₀ = ε-closure(δ,q₀), add it to R

// DFA start state

While ∃ an unmarked state r ∈ R

Mark r

// each state visited once

For each σ ∈ Σ

Let E = move(δ,r,σ)

Let e = ε-closure(δ,E)

// states reached via σ

If e ∉ R

Let R = R ∪ {e}

// add e to R (unmarked)

Let δ’ = δ’ ∪ {r, σ, e}

// add transition r→e on σ

Let Fₜ = {r | ∃ s ∈ r with s ∈ Fₙ}

// final if include state in Fₙ
NFA → DFA Example 1

- Start = \(\varepsilon\)-closure(\(\delta\),p1) = \{ \{p1,p3\} \}
- \(R = \{ \{p1,p3\} \}\)
- \(r \in R = \{p1,p3\}\)
- \(move(\(\delta\),\{p1,p3\},a) = \{p2\}\)
 - \(e = \varepsilon\)-closure(\(\delta\),\{p2\}) = \{p2\}
 - \(R = R \cup \{p2\} = \{ \{p1,p3\}, \{p2\} \}\)
 - \(\delta' = \delta' \cup \{\{p1,p3\}, a, \{p2\}\}\)
- \(move(\(\delta\),\{p1,p3\},b) = \emptyset\)
NFA → DFA Example 1 (cont.)

- \(R = \{ \{p1,p3\}, \{p2\} \} \)
- \(r \in R = \{p2\} \)
- \(\text{move}(\delta, \{p2\}, a) = \emptyset \)
- \(\text{move}(\delta, \{p2\}, b) = \{p3\} \)
 - \(e = \varepsilon\text{-closure}(\delta, \{p3\}) = \{p3\} \)
 - \(R = R \cup \{\{p3\}\} = \{ \{p1,p3\}, \{p2\}, \{p3\} \} \)
 - \(\delta' = \delta' \cup \{\{p2\}, b, \{p3\}\} \)
NFA → DFA Example 1 (cont.)

- $R = \{ \{p1,p3\}, \{p2\}, \{p3\} \}$
- $r \in R = \{p3\}$
- $\text{Move}(\{p3\},a) = \emptyset$
- $\text{Move}(\{p3\},b) = \emptyset$
- Mark $\{p3\}$, exit loop
- $F_d = \{\{p1,p3\}, \{p3\}\}$
 - Since $p3 \in F_n$
- Done!
NFA → DFA Example 2

NFA

DFA

\[R = \{ \{A\}, \{B,D\}, \{C,D\} \} \]
Quiz 4: Which DFA is equiv to this NFA?

NFA:

A.

B.

C.

D. None of the above
Quiz 4: Which DFA is equiv to this NFA?

NFA:

A.

B.

C.

D. None of the above
Actual Answer

NFA:
NFA \rightarrow DFA Example 3

NFA

DFA

$$R = \{ \{A, E\}, \{B, D, E\}, \{C, D\}, \{E\} \}$$
NFA \rightarrow DFA Example
NFA \rightarrow DFA Example
NFA → DFA Practice
NFA → DFA Practice
Subset Algorithm as a Fixed Point

- **Input:** NFA \((\Sigma, Q, q_0, F, \delta)\)
- **Output:** DFA \(M'\)
- **Algorithm**

 Let \(q_0' = \varepsilon\text{-closure}(\delta, q_0)\)

 Let \(F' = \{q_0'\}\) if \(q_0' \cap F \neq \emptyset\), or \(\emptyset\) otherwise

 Let \(M' = (\Sigma, \{q_0'\}, q_0', F', \emptyset)\) // starting approximation of DFA

 Repeat

 Let \(M = M'\) // current DFA approx

 For each \(q \in \text{states}(M), \sigma \in \Sigma\) // for each DFA state \(q\) and symb \(\sigma\)

 Let \(s = \varepsilon\text{-closure}(\delta, \text{move}(\delta, q, \sigma))\) // new subset from \(q\)

 Let \(F' = \{s\}\) if \(s \cap F \neq \emptyset\), or \(\emptyset\) otherwise, // subset contains final?

 \(M' = M' \cup (\emptyset, \{s\}, \emptyset, F', \{(q, \sigma, s)\})\) // update DFA

 Until \(M' = M\) // reached fixed point
Redux: NFA to DFA Example 1

- $q_0' = \varepsilon\text{-closure}(\delta, p1) = \{p1, p3\}$
- $F' = \{\{p1, p3\}\}$ since $\{p1, p3\} \cap \{p3\} \neq \emptyset$

$M' = \{ \Sigma, \{\{p1, p3\}\}, \{p1, p3\}, \{\{p1, p3\}\}, \emptyset \}$
Redux: NFA to DFA Example 1 (cont)

- $M' = \{ \Sigma, \{p1,p3\}, \{p1,p3\}, \{\{p1,p3\}\}, \emptyset \}$
 - $q = \{p1, p3\}$
 - $a = a$
 - $s = \{p2\}$
 - since $\text{move}(\delta,\{p1, p3\}, a) = \{p2\}$
 - and ϵ-closure($\delta,\{p2\}) = \{p2\}$
- $F' = \emptyset$
 - Since $\{p2\} \cap \{p3\} = \emptyset$
 - where $s = \{p2\}$ and $F = \{p3\}$

- $M' = M' \cup (\emptyset, \{p2\}, \emptyset, \emptyset, \{([p1,p3], a, \{p2\})\})$
 - $Q' = \{1,3\}$
 - $q_0' = 1,3$
 - $F' = \{2\}$
 - δ'
Redux: NFA to DFA Example 1 (cont)

- $M' = \{ \Sigma, \{\{S1,S3\},\{S2\}\}, \{S1,S3\}, \{\{S1,S3\}\}, \{((\{S1,S3\},a,\{S2\})\}\} \} $
 - $q = \{S2\}$
 - $a = b$
 - $s = \{S3\}$
 - since $\text{move}(\delta,\{S2\},b) = \{S3\}$
 - and ε-closure$(\delta,\{S3\}) = \{S3\}$
 - $F' = \{\{S3\}\}$
 - Since $\{S3\} \cap \{S3\} = \{S3\}$
 - where $s = \{S3\}$ and $F = \{S3\}$

- $M' = M' \cup$
 - $(\emptyset, \{\{S3\}\}, \emptyset, \{\{S3\}\}, \{((\{S2\},b,\{S3\})\}\})$
 - $Q' \quad q_0' \quad F' \quad \delta'$

- $Q' = \{ \Sigma, \{\{S1,S3\},\{S2\},\{S3\}\}, \{S1,S3\}, \{\{S1,S3\},\{S3\}\}, \{((\{S1,S3\},a,\{S2\}),\{\{S2\},b,\{S3\}\}\}\} \}
Analyzing the Reduction

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with n states, DFA may have 2^n states
 - Since a set with n items may have 2^n subsets
 - Corollary
 - Reducing a NFA with n states may be $O(2^n)$
Recap: Matching a Regexp R

- Given R, construct NFA. Takes time $O(R)$
- Convert NFA to DFA. Takes time $O(2^{|R|})$
 - But usually not the worst case in practice
- Use DFA to accept/reject string s
 - Assume we can compute $\delta(q,\sigma)$ in constant time
 - Then time to process s is $O(|s|)$
 - Can’t get much faster!
- Constructing the DFA is a one-time cost
 - But then processing strings is fast
Closing the Loop: Reducing DFA to RE

DFA can reduce NFA

DFA can transform RE

NFA can transform RE
Reducing DFAs to REs

- General idea
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA
DFA to RE example

Language over $\Sigma = \{0, 1\}$ such that every string is a multiple of 3 in binary

\[
(0 + 1(0 1^* 0)1)^*
\]
Other Topics

- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA
Minimizing DFAs

- Every regular language is recognizable by a unique minimum-state DFA
 - Ignoring the particular names of states

- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
Minimizing DFA: Hopcroft Reduction

- **Intuition**
 - Look to distinguish states from each other
 - End up in different accept / non-accept state with identical input

- **Algorithm**
 - Construct initial partition
 - Accepting & non-accepting states
 - Iteratively split partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
 - Update transitions & remove dead states

J. Hopcroft, “An n log n algorithm for minimizing states in a finite automaton,” 1971
Splitting Partitions

- No need to split partition \{S,T,U,V\}
 - All transitions on \(a\) lead to identical partition \(P2\)
 - Even though transitions on \(a\) lead to different states
Splitting Partitions (cont.)

- Need to split partition \{S,T,U\} into \{S,T\}, \{U\}
 - Transitions on \(a\) from \(S,T\) lead to partition \(P2\)
 - Transition on \(a\) from \(U\) lead to partition \(P3\)
Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \{S, T, U\}
 - After splitting partition \{X, Y\} into \{X\}, \{Y\} we need to split partition \{S, T, U\} into \{S, T\}, \{U\}
Minimizing DFA: Example 1

- DFA

- Initial partitions

- Split partition
Minimizing DFA: Example 1

- **DFA**

- **Initial partitions**
 - Accept \(\{ R \} \) = \(P_1 \)
 - Reject \(\{ S, T \} \) = \(P_2 \)

- **Split partition? \(\rightarrow \) Not required, minimization done**
 - \(\text{move}(S,a) = T \in P_2 \) \(\rightarrow \) \(\text{move}(S,b) = R \in P_1 \)
 - \(\text{move}(T,a) = T \in P_2 \) \(\rightarrow \) \(\text{move}(T,b) = R \in P_1 \)
Minimizing DFA: Example 2
Minimizing DFA: Example 2

- DFA

- Initial partitions
 - Accept \{ R \} = P1
 - Reject \{ S, T \} = P2

- Split partition? \rightarrow Yes, different partitions for B
 - move(S,a) = T \in P2 \quad \rightarrow \quad \text{move}(S,b) = T \in P2
 - move(T,a) = T \in P2 \quad \rightarrow \quad \text{move}(T,b) = R \in P1

- DFA already minimal
Complement of DFA

- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA
 - $\Sigma = \{a,b\}$
Complement of DFA

Algorithm
- Add explicit transitions to a dead state
- Change every accepting state to a non-accepting state & every non-accepting state to an accepting state

Note this only works with DFAs
- Why not with NFAs?
Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA

- Equivalence of RE, NFA, DFA
 - RE \rightarrow NFA
 - Concatenation, union, closure
 - NFA \rightarrow DFA
 - ε-closure & subset algorithm

- DFA
 - Minimization, complementation