
CMSC 330: Organization of
Programming Languages

OCaml Data Types

1CMSC330 Spring 2019

2

OCaml Data

• So far, we’ve seen the following kinds of data
• Basic types (int, float, char, string)
• Lists

Ø One kind of data structure
Ø A list is either [] or h::t, deconstructed with pattern matching

• Tuples and Records
Ø Let you collect data together in fixed-size pieces

• Functions

• How can we build other data structures?
• Building everything from lists and tuples is awkward

3

User Defined Types

• type can be used to create new names for types
• Useful for combinations of lists and tuples

• Examples
• type my_type = int * (int list)
• let (x:my_type) = (3, [1; 2])

• type my_type2 = int*char*(int*float)
• let (y:my_type2) = (3, ‘a’, (5, 3.0))

(User-Defined) Variants
type coin = Heads | Tails

let flip x =
match x with
Heads -> Tails

| Tails -> Heads

let rec count_heads x =
match x with
[] -> 0

| (Heads::x’) -> 1 + count_heads x’
| (_::x’) -> count_heads x’

4

In simplest form:
Like a C enum

Basic pattern
matching
resembles C
switch

Combined list
and variant
patterns possible

Constructing and Destructing Variants

5

• Syntax
• type t = C1 | … | Cn
• the Ci are called constructors

Ø Must begin with a capital letter

• Evaluation
• A constructor Ci is already a value
• Destructing a value v of type t is done by pattern

matching on v ; the patterns are the constructors Ci

• Type Checking
• Ci : t (for each Ci in t’s definition)

6

Data Types: Variants with Data

• We can define variants that “carry data” too
• Not just a constructor, but a constructor plus values

• Rect and Circle are constructors
• where a shape is either a Rect(w,l)

Ø for any floats w and l
• or a Circle r

Ø for any float r

type shape =
Rect of float * float (* width*length *)

| Circle of float (* radius *)

7

Data Types (cont.)

• Use pattern matching to deconstruct values
• Can bind pattern values to data parts

• Data types are aka algebraic data types and
tagged unions

let area s =
match s with

Rect (w, l) -> w *. l
| Circle r -> r *. r *. 3.14

;;
area (Rect (3.0, 4.0));; (* 12.0 *)
area (Circle 3.0);; (* 28.26 *)

8

Data Types (cont.)

• What's the type of lst?
• shape list

• What's the type of lst's first element?
• shape

type shape =
Rect of float * float (* width*length *)

| Circle of float (* radius *)

let lst = [Rect (3.0, 4.0) ; Circle 3.0]

