
CMSC 330:  Organization of 
Programming Languages

Objects and Abstract Data Types



CMSC 330 Spring 2019

Abstract Data Types

• Expose signature
• operators to create, combine, and observe values

• Hide representation & implementations

• Advantages 
• Good engineering (libraries, code reuse, local reasoning)
• Optimizations (choose implementation w.r.t. your code)

• Limitations
• Require static typing
• Different representations cannot mix

2



CMSC 330 Spring 2019

Objects

• Object-oriented programming (OOP)
- Computation as interactions between objects

- An object...
•Is a collection of fields (data)
•...and methods (code)
•When a method is invoked

➢Method has implicit this parameter that can be used to access 
fields of object

3



Relating ADTs to Objects

type iSet =  {
isEmpty     : bool;
insert      : int -> iSet;
contains    : int -> bool;

}

type set 
val empty    : set 

val isEmpty : set -> bool
val insert   : set -> int -> set
val contains : set -> int -> bool 

4

Observations on set 
argument

Abstract Data Types:
define behavior for all sets

“Objects” here:
- encoded as records
- fields define how this object 
interacts with other objects  

CMSC 330 Spring 2019



CMSC 330 Spring 2019 5

ADT for Int Sets using Closures
module IntSetF : INT_SET =
struct
type set = bool * (int -> bool)
(* whether set is empty,

returns true if given int in set *)

let empty = (true, fun x -> false) 
let isEmpty (e,_) = e
let insert (_,f) i =
(false, if f i then f

else fun j -> i = j || f j)
let contains (_,f) i = f i

end;;



CMSC 330 Spring 2019

Objects by Encoding

• We will consider an encoding of objects similar 
to the Object → FP encoding we saw before

• Objects contain methods
➢ But we will define “top level” methods that take the object as 

an argument. These will call the object’s methods
• This will let us see how to encode the self/this 

parameter
➢ Not something we looked at before

• In our examples, objects are not imperative
• “Updates” to an object just return a new object with 

the change made from the original

6



IntSet as an object
type iSet =  {

isEmpty : bool;
insert      : int -> iSet;
contains    : int -> bool;

}

7

# let (x:iSet) = … ;;
- …
# let y = x.insert 1;;
- …
# let z = insert_obj y 2;;
- … (* calls y’s insert method *)
# y.contains 1;;
- : bool = true
# z.contains 2;;
- : bool = false

CMSC 330 Spring 2019



CMSC 330 Spring 2019

Example: Insert Set

let rec insert_obj s n = 
if s.contains n then s else {
isEmpty = false; 
contains = fun i -> (i = n || s.contains i);
insert   = fun i -> insert_obj this i;

}

8

calling contains field 
of the object s

recursive call to the 
object being defined

Question: How can we encode this?
Answer: Use the fixpoint combinator Y
fix : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b



CMSC 330 Spring 2019

Example: Insert Set

let rec insert_obj s n = 
if s.contains n then s else (fix (fun this _ -> {
isEmpty = false;
contains = fun i -> (i = n || s.contains i);
insert   = fun i -> insert_obj (this ()) i;

})) ()

9

calling contains field 
of the object s

recursive call to the 
object being defined

Question: How can we encode this?
Answer: Use the fixpoint combinator Y
fix : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b



CMSC 330 Spring 2019

Quiz 1: Which is the Empty Set ?

10

A. let empty_obj _ = (fix (fun this _ ->  {
isEmpty = false;
contains = fun i -> false;
insert = fun i -> insert_obj (this()) i })) ()

B. let empty_obj _ = (fix (fun this _ ->  {
isEmpty = true;
contains = fun i -> false;
insert = fun i -> insert_obj (this()) i})) ()

C. let empty_obj _ = (fix (fun this _ ->  {
isEmpty = true;
contains = fun i -> false;
insert = fun i -> this() })) ()



CMSC 330 Spring 2019

Quiz 1: Which is the Empty Set ?

11

B. let empty_obj _ = (fix (fun this _ ->  {
isEmpty = true;
contains = fun i -> false;
insert = fun i -> insert_obj (this()) i})) ()



CMSC 330 Spring 2019

Quiz 2: Which produces the union?

12

A. let union_obj s1 s2 = (fix (fun this _ ->  {
isEmpty = s1.isEmpty || s2.isEmpty;
contains = fun i -> s1.contains i || s2.contains i;
insert   = fun i -> insert_obj (this()) i })) ()

B. let union_obj s1 s2 = (fix (fun this _ ->  {
isEmpty = s1.isEmpty || s2.isEmpty;
contains = fun i -> s1.contains i && s2.contains i;
insert   = fun i -> insert_obj (this()) i})) ()

C. let union_obj s1 s2 = (fix (fun this _ ->  {
isEmpty = s1.isEmpty && s2.isEmpty;
contains = fun i -> s1.contains i || s2.contains i;
insert   = fun i -> insert_obj (this()) i})) ()



CMSC 330 Spring 2019

The Union Set: Autognosis

13

Autognosis: An object can only access other objects 
through their public interface

Problem: The representation of s1 and s2 is unknown, 
so … cannot used for optimizations

Solution: Expose more implementation details

C. let union_obj s1 s2 = (fix (fun this _ ->  {
isEmpty = s1.isEmpty && s2.isEmpty;
contains = fun i -> s1.contains i || s2.contains i;
insert   = fun i -> insert_obj (this()) i})) ()



CMSC 330 Spring 2019

Lack of Autognosis in ADTs

14

Autognosis: An object can only access other objects 
through their public interface

+ Each implementation can inspect representation 
+ Used for optimizations (eg., knowing the 

representation is a sorted lists)

- Different implementations cannot interact
- eg., cannot union IntSet and IntSetBST



CMSC 330 Spring 2019

Quiz 3: The Even Set

15

A. even_obj _ = (fix (fun this _ ->  {
isEmpty = false;
contains = fun i -> i mod 2 = 0;
insert   = fun i -> insert_obj (this()) i })) ()

B. even_obj _ = (fix (fun this _ ->  {
isEmpty = true;
contains = fun i -> true;
insert   = fun i -> insert_obj (this()) i })) ()

C. even_obj _ = (fix (fun this _ ->  {
isEmpty = i mod 2 = 0;
contains = fun i -> i mod 2 = 0;
insert   = fun i -> insert_obj (this()) i })) ()



CMSC 330 Spring 2019

The Even Set: Flexibility

16

Flexibility: 
- Objects accept any value that implements 

required methods
- They can be easily extended with new (here, 
infinite) representations. 

A. even_obj _ = (fix (fun this _ ->  {
isEmpty = false;
contains = fun i -> i mod 2 = 0;
insert   = fun i -> insert_obj (this()) i })) ()



CMSC 330 Spring 2019

Computations are Object Interactions

17

(union_obj
(even_obj()) 
(empty_obj().insert(3))

).contains(3)

Computation via dynamic binding:
• The function to be called is selected from the 

object record
• Every object has a different contains field.
• Difficult to reason about which will be called



(union_obj
(even_obj()) 
(empty_obj().insert(3))

).contains(3)

CMSC 330 Spring 2019

Computations are Object Interactions

18

contains = fun i -> i mod 2 = 0 

contains = fun i -> false 
contains = fun i -> i == 3 || false 

contains = fun i -> i == 3 || false || i mod 2 = 0  



CMSC 330 Spring 2019

Quiz 4: ADTs vs. Objects

19

Used for data abstraction 
(i.e., separate behavior from implementation)

A. ADTs B. Objects
C. None           D. Both



CMSC 330 Spring 2019

Quiz 4: ADTs vs. Objects

20

Used for data abstraction 
(i.e., separate behavior from implementation)

ADTs use Type Abstraction: 
expose a type whose representation is hidden.

Objects use Procedural Abstraction:
expose procedures available on each object.

A.  ADTs          B. Objects
C. None          D. Both



CMSC 330 Spring 2019

Quiz 5: ADTs vs. Objects

21

Require Static Type System

A. ADTs B. Objects
C. None           D. Both



22

ADTs require Static Types

CMSC 330 Spring 2019

A.  ADTs B. Objects
C. None           D. Both

type set 
val empty    : set 

val isEmpty  : set -> bool
val insert   : set * int -> set
val contains : set * int -> bool 



CMSC 330 Spring 2019

Quiz 5: ADTs vs. Objects

23

ADTs rely on Static Type System to define the 
Type Abstraction

Objects define abstractions via records:
can be used in Static & Dependently typed lang.

Require Static Type System

A.  ADTs B. Objects
C. None           D. Both



CMSC 330 Spring 2019

Quiz 6: ADTs vs. Objects

24

Allow mixing different representations.

A. ADTs B. Objects
C. None           D. Both



CMSC 330 Spring 2019

Quiz 6: ADTs vs. Objects

25

ADTs doesn’t permit interaction of different representations. 

Representation can be inspected, which is used for 

optimizations.

Objects cannot inspect representations (example union).

Different representations can be mixed. 

A.  ADTs          B. Objects
C. None           D. Both

Allow mixing different representations.



CMSC 330 Spring 2019

ADTs vs. Objects

26

ADTs are easier to reason about statically
• The implementation is statically known (unlike dynamic 

binding)
• Obey theories in math (abstract algebra) and PL 

(existential typing) 

Objects are flexible and easy to extend.
• Only requirement to have appropriate fields
• Different representations can interact, so precise 

behavior hard to reason about, statically


