
CMSC 330: Organization of
Programming Languages

Type Systems

1CMSC330 Fall 2018

Types: Recall our Intro to OCaml

Types classify expressions
• Characterize the set of possible values an expression

could evaluate to
• We use metavariable t to designate an arbitrary type

Ø Examples include int, bool, string, and more.

Expression e has type t if e will (always)
evaluate to a value of type t
• { …, -1, 0, 1, … } are values of type int
• 34+17 is an expression of type int, since it

evaluates to 51, which has type int
• Write e : t to say e has type t

2

Type Systems

A type system is a series of rules that ascribe
types to expressions
• The rules prove statements e : t

The process of applying these rules is called
type checking
• Or simply, typing
• Type checking aka the program’s static semantics

Different languages have different type systems

3

OCaml Type System: Conditionals

Syntax
• if e1 then e2 else e3

Type checking
• If e1 : bool and e2 : t and e3 : t then
if e1 then e2 else e3 : t

• More formally:

⊢ e1 : bool ⊢ e2 : t ⊢ e3 : t
⊢ if e1 then e2 else e3 : t

4

Type Safety
Well-typed
• A well-typed program passes the language’s type system

Going wrong
• The language definition deems the program nonsensical

Ø “Colorless green ideas sleep furiously”
Ø If the program were to be run, anything could happen
Ø char buf[4]; buf[4] = ‘x’; // undefined!

Type safe = “Well-typed programs never go wrong”
• Robin Milner, 1978
• In other words: Well-typed ⟹ well-defined

5

Type Safe?

Java, Haskell, OCaml: Yes (arguably).
• The languages’ type systems restrict programs to

those that are defined
Ø Caveats: Foreign function interfaces to type-unsafe C, bugs

in the language design, bugs in the implementation, etc.

C, C++: No.
• The languages’ type systems do not prevent

undefined behavior
Ø Unsafe casts (int to pointer), out-of-bounds array accesses,

dangling pointer dereferences, etc.

6

What’s Bad about Being Undefined?
Well, undefined behavior is unconstrained
• Depends on the compiler/interpreter’s treatment

Undefined behavior in C/C++ is traditionally a
source of severe security vulnerabilities
• These are bugs that have security consequences

Stack smashing exploits out-of-bounds array
accesses to inject code into a running program
• Write outside the bounds of an array (undefined!)
• thereby corrupting the return address
• to point to code the attacker provides
• to gain control of the attacked machine

7

Type Safety is Often Conservative

I.e., some well-
defined programs
are not well typed

8

Well-defined but not Well-typed

In OCaml, the expression 4+"hi" is undefined
• Ocaml’s type system does not typecheck this

expression, ensuring it is never executed
Ø Good!

But the following expressions are well-defined, but
still rejected
• if true then 0 else 4+"hi"

Ø Always evaluates to 0
• let f4 x = if x <= abs x then 0 else 4+"hi"

Ø f4 e evaluates to 0 for all (e : int)

9

Soundness and Completeness

Type safety is a soundness property
• That a term type checks implies its execution will be

well-defined

Static type systems are rarely complete
• That a term is well-defined does not imply that it will

type check
Ø if true then 0 else 4+"hi"

Dynamic type systems are often complete
• All expressions are well defined, and all type check
• 4+"hi" well-defined: it gives a run-time exception

10

Static vs. Dynamic Type Systems

OCaml, Java, Haskell, etc. are statically typed
• Expressions are given one of various different types

at compile time, e.g., int, float, bool, etc.
Ø Or else they are rejected

Ruby, Python, etc. are dynamically typed
• Can view all expressions as having a single type Dyn

Ø The language is uni-typed

• All operations are permitted on values of this type
Ø E.g., in Ruby, all objects accept any method call

• But: Some operations result in a run-time exception
Ø Nevertheless, such behavior is well defined

11

Dynamic Type Checking

The run-time checks performed by dynamic
languages often called dynamic type checking

The type of an expression checked when
needed
• Values keep tag, set when the value is created,

indicating its type (e.g., what class it has)

Disallowed operations cause run-time exception
• Type errors may be latent in code for a long time

12

Quiz 1

When is the type of a variable determined in a
dynamically typed language?

• A. When the program is compiled
• B. At run-time, when that variable is first

assigned to
• C. At run-time, when the variable is last

assigned to
• D. At run-time, when the variable is used

13

Quiz 1

When is the type of a variable determined in a
dynamically typed language?

• A. When the program is compiled
• B. At run-time, when that variable is first

assigned to
• C. At run-time, when the variable is last

assigned to
• D. At run-time, when the variable is used

14

Quiz 2

When is the type of a variable determined in a
statically typed language?

• A. When the program is compiled
• B. At run-time, when that variable is first

assigned to
• C. At run-time, when the variable is last

assigned to
• D. At run-time, when the variable is used

15

Quiz 2

When is the type of a variable determined in a
statically typed language?

• A. When the program is compiled
• B. At run-time, when that variable is first

assigned to
• C. At run-time, when the variable is last

assigned to
• D. At run-time, when the variable is used

16

Devil’s Bargain?

Dynamic typing is sound and complete
• That seems good …

But it trades compile-time errors for (well-
defined) run-time exceptions!
Can’t we build a better static type system?
• I.e., that that aims to eliminate all language-level run-

time errors and is also complete?
Yes, we can build more precise static type
systems, but never a perfect one
• To do so would be undecidable!

17

Fancy Types

Lots of ideas over the last few decades aimed at
improving the precision of type systems
• So they can rule out more run-time errors

Generic types (parametric polymorphism)
• for containers and generic operations on them

Subtyping
• for interchanging objects with related shapes

Dependent types can include data in types
• Instead of int list, we could have int n list for

a list of n elements. Hence hd has type int n list
where n>0.

18

Type Systems with Fancy Types

OCaml’s type system has types for
• generics (polymorphism), objects, curried functions, …
• all unsupported by C

Haskell’s type system has types for
• Type classes (qualified types), effect-isolating monads,

higher-rank polymorphism, …
• All unsupported by OCaml

More precision ensures more run-time errors
prevented, with less contorted programs: Good!
• But now the programmer must understand (and

sometimes do) more ..
19

Quiz 3

Which of the following is well-defined in OCaml,
but is not well-typed?

• A. let f g = (g 1, g “hello”) in f (fun x -> x)
• B. List.map (fun x -> x + x) [1; “hello”]
• C. let x = 0 in 5 / x
• D. let x = Array.make 1 1 in x.(2)

20

Quiz 3

Which of the following is well-defined in OCaml,
but is not well-typed?

• A. let f g = (g 1, g “hello”) in f (fun x -> x)
• B. List.map (fun x -> x + x) [1; “hello”]
• C. let x = 0 in 5 / x
• D. let x = Array.make 1 1 in x.(2)

Ill-typed and
ill-definedwell-typed and

well-defined
well-typed and
well-defined

Functions as arguments cannot
be used polymorphically

21

Perfect Type System? Impossible

No type system can do all of following
• (1) always terminate, (2) be sound, (3) be complete
• While trying to eliminate all run-time exceptions, e.g.,

Ø Using an int as a function
Ø Accessing an array out of bounds
Ø Dividing by zero, …

Doing so would be undecidable
• by reduction to the halting problem
• Eg., while (…) {…} arr[-1] = 1;

Ø Error tantamount to proving that the while loop terminates

22

Type Checking and Type Inference

Type inference is a part of (static) type checking
• Reduces the programmer’s effort

Static types are explicit (aka manifest) or inferred
• Manifest – specified in text (at variable declaration)

Ø C, C++, Java, C#

• Inferred – compiler determines type based on usage
Ø OCaml, C# and Go (limited)

Fancier type systems may require explicit types
• Haskell considers adding a type signature your

function to be good style, even when not required

23

Static vs. Dynamic Type Checking

Having carefully stated facts about static
checking, can now consider arguments about
which is better:

static checking or dynamic checking

24

Claim 1: Dynamic is more convenient
Dynamic typing lets you build a heterogeneous list or
return a “number or a string” without workarounds

Ruby: a = [1,1.5]

OCaml:
type t =

Int of int
| Float of float

let a = [Int 1; Float 1.5];;

25

Claim 1: Static is more convenient
Can assume data has the expected type without
cluttering code with dynamic checks or having errors far
from the logical mistake

def cube(x)
if x.is_a?(Numeric)

x * x * x
else

"Bad argument”
end

end

Ruby:

let cube x = x * x * x
(* we know x is int *)

OCaml:

26

Claim 2: Static prevents useful programs
Any sound static type system forbids programs that do
nothing wrong

Ruby:
if e1 then
“lady”

else
[7,”hi”]

end

OCaml:
if e1 then “lady” else (7,”hi”)
(* does not type-check *)

27

Claim 2: But always workarounds
Rather than suffer time, space, and late-errors costs of
tagging everything, statically typed languages let
programmers “tag as needed” (e.g., with types)
Ruby: Tags everything implicitly (uni-typed)
OCaml: Tag explicitly, as needed (code up unifying type)

type tort = Int of int
| String of string
| Cons of tort * tort
| Fun of (tort -> tort)
| …

if e1 then
String "lady"

else
Cons (Int 7, String "hi")

28

Claim 3: Static catches bugs earlier
Static typing catches many simple bugs as soon as
“compiled”.
• Since such bugs are always caught, no need to test for them.
• In fact, can code less carefully and “lean on” type-checker

def pow (x,y)
if y == 0 then

1
else

x * pow (y - 1)
end

end
can’t detect until run

Ruby: OCaml:

let pow x y =
if y = 0 then 1
else x * pow (y-1)

(* does not type-check *)

29

Claim 3: Static catches only easy bugs
But static often catches only “easy” bugs, so you still
have to test your functions, which should find the “easy”
bugs too

def pow (x,y)
if y == 0 then

1
else

x + pow (x,(y-1))
end

end

Ruby: OCaml:

let pow x y =
if y = 0 then 1
else x + pow x (y-1)

(* oops *)

30

Claim 4: Static typing is faster

Language implementation:
• Does not need to store tags (space, time)
• Does not need to check tags (time)
• Can rely on values being a particular type, so it can

perform more optimizations
Your code:
• Does not need to check arguments and results

beyond what is evidently required

31

Claim 4: Dynamic typing is not too
much slower

Language implementation:
• Can use remove some unnecessary tags and tests

despite the lack of types
Ø While difficult (impossible) in general, it is often possible for

the performance-critical parts of a program

Your code:
• Do not need to “code around” type-system limitations

with extra tags, functions etc.

32

Claim 5: Code reuse easier with dynamic
Without a restrictive type system, more code can just be
reused with data of different types

If you use cons cells for everything, libraries that work
on cons cells are useful

Collections libraries are amazingly useful but often have
very complicated static types
• Polymorphism/generics/etc. are hard to understand, but are

aiming to provide what dynamic typing gives naturally

Etc.

33

Claim 5: Code reuse easier with static
The type system serves as “checked documentation,”
making the “contract” with others’ code easier to
understand and use correctly

34

Static vs. Dynamic: Age-old Debate
Static vs. dynamic typing is too coarse a question
• Better question: What should we enforce statically?

Ø E.g., OCaml checks array bounds, division-by-zero, at run-time

• Legitimate trade-offs

Idea: Flexible languages allowing best-of-both-worlds?
• Use static types in some parts of the program, but

dynamic checking in other parts?
Ø Called gradual typing: an idea still under active research

• Would programmers use such flexibility well? Who
decides?

35

