
CMSC351 (Kruskal) Homework 1 Due: Friday, February 8, 2019

Problem 1. Assume that

• Insertion Sort uses 2n2 instructions to sort n values.

• Merge Sort uses 50n lg n instructions to sort n values.

Assume that

• Computer A executes 10 billion instructions / second.

• Computer B executes 10 million instructions / second.

(a) How much time does Computer A use to sort 10 billion values using Insertion Sort? Show
your work, but not the actual calculations.

(b) How much time does Computer B use to sort 10 billion values using Merge Sort? Show
your work, but not the actual calculations.

(c) What do we learn from this?

Problem 2. Here is an algorithm to find the largest value in a list of size n.

largest ← 1

for i = 2 to n do

if A[i] > A[largest] then largest ← i

end for

print(A[largest])

An alternative is to run the algorithm as a ladder, as in done in the NCAA basketball cham-
pionship (March Madness): Compare the first and second elements of the array, compare the
third and fourth elements of the array, compare the fifth and sixth elements of the array, etc.
Then compare the larger of the first and second elements of the array, with the larger of the
third and fourth elements of the array, compare the larger of the fifth and sixth elements of
the array, with the larger of the seventh and eighth elements of the array, etc. Etc.

Write the ladder algorithm in pseudo-code. You may only use a constant amount of extra
memory. You may reorganize the elements of the array, but you may not destroy them. Do
NOT use recursion (which, in any case, would use extra memory). You can assume that the
array is stored in locations 1, . . . , n or locations 0, . . . , n − 1, whichever you prefer. Assume
that n is a power of 2.

Problem 3. Challenge problem. Will not be graded. Write the ladder algorithm in pseudo-
code assuming general n (not necessarily a power of 2).


