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Welcome to your first homework assignment! Like I said in class, I'm going to try to leave the 
problem statement fairly open-ended because I want to see your different styles, I guarantee 
some of you will use functions that I've never seen or in ways I've never thought of before! 
First, here's an overview of the material in case you're not familiar with it: 
 
Asymptotic Complexity refers to how many calculations a computer has to do to run a certain 
algorithm depending on the size of the input, that is, how much the computation time is going 
to scale with input size. For sorting algorithms, the state of the art is 𝑛𝑙𝑜𝑔𝑛 time, meaning that 
if the size of the list you would like to sort is n, then it's going to take on the order of 𝑛𝑙𝑜𝑔𝑛 
computations, basic additions and multiplications, to get the job done. 
 
Now, what do we mean by "on the order of"? Intuitively we mean up to scaling by constants, 
that is, if it takes 𝑛2 time or 2𝑛2 time we don't really care to make that distinction, we're 
interested in the asymptotic behavior. To quantitatively analyze this asymptotic behavior, 
naturally we introduce limits. We’re going to say that two algorithms running in 𝑓(𝑛) and 𝑔(𝑛) 
computations satisfy f being Big-O of g, the notation being 𝑓(𝑛) = 𝑂(𝑔(𝑛)), if in the limit their 
behavior is the same, formally: 
 

𝑓(𝑛) = 𝑂(𝑔(𝑛)) ↔ log𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
∈ ℝ≥0 

 
The Big-O expression 𝑓 = 𝑂(𝑔) can be interpreted as "f is at least as fast as g", meaning that f 
might run asymptotically faster than g, or the same. Notice how if 𝑓(𝑛) = 𝑛3 and 𝑔(𝑛) = 𝑛2, 
for example, then the limit will diverge, meaning that 𝑓 ≠ 𝑂(𝑔), that is, f is asymptotically 
worse than g. Another way of saying this than with limits is that f is Big-O of g if and only if 
there exists some constant c such that for some N, for all n after that N, g(n) is bigger than c 
times f(n): 
 

𝑓(𝑛) = 𝑂(𝑔(𝑛)) ↔ ∃𝑐 ∈ ℝ≥0 ∃𝑁 ∈ ℤ+ ∀𝑛 ∈ ℤ>𝑁  𝑔(𝑛) ≥ 𝑐𝑓(𝑛) 

 
So in other words, g(n) can be a better algorithm for small n, but in the limit as the size of the 
input goes to infinity, f(n) will be a better or comparable (off by a scalar multiplication) 
algorithm. Also note that the addition of asymptotically smaller terms doesn't effect anything 
as is obvious with the limit definition, that is, the behavior of a limit of a sum of terms in terms 
of n as n goes to infinity is only dictated by the behavior of the largest term. 
 
 
 



 
Problem: I want a visualization of how these functions run compared to each other. How much 
worse is an n2 algorithm than n (linear time) algorithm? n3 vs. n2? What if you compare a 
quadratic time algorithm to a linear time algorithm that's really steep, like f(n)=100n? What if 
the linear time algorithm has huge overhead, that is, a huge constant term added to it – how 
big input does it take for the linear algorithm to actually be better than the quadratic one? 
 
Ideas: 
 
Summit in the U.S. is the fastest supercomputer in the world 
(https://www.theverge.com/circuitbreaker/2018/6/12/17453918/ibm-summit-worlds-fastest-
supercomputer-america-department-of-energy), operating at 122.3 petaflops, meaning it can 
perform 122.3 x 1015 (that's quadrillions) floating point calculations (additions and 
multiplications) per second, if we're dealing with this kind of power, how big of input actually 
scares us, that is, maybe sometimes polynomial or even exponential time algorithms are fine if 
the input is small enough. 
 
Brown University professor John Hughes (the guy who literally wrote the book on computer 
graphics) told me "Logarithmic time is basically constant", his argument went like this:  

• The diameter of the observable universe is 93 billion light years, and the Planck volume 
is 4 x 10-105 cubic meters, meaning there are 1.1 x 10179 Planck volumes in the 
observable universe. 

• So, by the laws of physics, 10179 is the maximum amount of data that could ever be 
encoded in our reality, and that's if you somehow managed to encode the smallest bit 
allowed by quantum physics over the entire observable universe. 

• If n = 10179, the log(n) time using base 10 is 179, and log(n) time using base 2 is still only 
594.77; 595 computations could be done BY HAND if you wanted to! 

• The logarithm function grows so incredibly slowly that if you get a log(n) time algorithm 
you don't need to look any further. 

You could show me this! 
 
A polynomial time algorithm is one that runs in time f(n) where f(n) is a polynomial in n. A non-
deterministic Polynomial-time algorithm is one that runs in something worse than polynomial 
time, like exponential time, or worse. These are the P and NP in the famous problem P vs. NP. 
Why is P vs. NP such a big deal? Is exponential time really that much worse than polynomial 
time? The best P vs. NP video by the way: https://www.youtube.com/watch?v=YX40hbAHx3s 
 
Note: You can use the second week's notes as well! You may find the Map and Table functions 
particularly useful, maybe wait for in class to tackle the implicit function stuff though. 


