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Now that you have plenty of visualization tools, in both two dimensions and three dimensions 
(or at least you will soon) under your belt for drawing things, you're equipped to start doing 
some awesome math stuff. For the second project you need only complete one of Project 2a, 
Project 2b (this one), or Project 2c. If you like linear algebra, this is one is a good choice. 
 
For this project I want you to make a series of models for visualizing the dot product and cross 
product – a model for visualizing matrix transformations of two-vectors and three-vectors in 
general would also be cool (this are so-called linear transformations as they respect addition 
and scalar multiplication; this is the "Linear" in "Linear Algebra"). 

The dot product (also called sometimes called the inner product in linear algebra classes – an 
inner product is really a more general idea, the dot product is an instance of an inner product) 
is an operator between two vectors that returns a scalar, define as: 

𝑣 = #𝑣$, 𝑣&, 𝑣'(  𝑢 = #𝑢$, 𝑢&, 𝑢'( 

𝑣 ∙ 𝑢 ≡ 𝑣$𝑢$ + 𝑣&𝑢& + 𝑣'𝑢' 

Great! Okay, now, what does this mean? Why on earth would it every be useful to us to sum up 
the product of the respective components of two vectors? Can you make a visualization that 
gives some sort of idea of what's going on? I think this one will actually be harder than the cross 
product one – I've personally been struggling for years to get an idea of a dot product really 
means. At this point I think of inner products as tools for creating norms: 

〈𝑣, 𝑣〉 = ‖𝑣‖0 

that is, the inner product of a vector with itself gives its magnitude. Generally, a choice of inner 
product defines for you a norm – but we only need to worry about the inner product above. 
Perhaps exploiting the fact that the dot product of vector with itself being equal to the square 
of the Euclidian norm (the magnitude as derived with the Baudhayana theorem). What does 
this mean for two different vectors though? Recall that the distance formula between two 
vectors looks an awful lot like the Baudhayana Theorem – in fact it's magnitude of the 
difference vector between them. There are connections here to investigate! 

 

The cross product of two vectors is defined using a determinate: 



𝑣 × 𝑢 ≡ 2
𝚤̂ 𝚥̂ 𝑘7
𝑣$ 𝑣& 𝑣'
𝑢$ 𝑢& 𝑢'

2 = #𝑣&𝑢' − 𝑣'𝑢&, 𝑣'𝑢$ − 𝑣$𝑢', 𝑣$𝑢& − 𝑣&𝑢$( 

The cross product of two vectors returns another vector with two important properties: 
 (1) It's perpendicular to the plane spanned by those two vectors 
 (2) Its magnitude is the area of the parallelogram created by those two vectors 
Both of these would be awesome to see! 

What happens to (1) if u and v are parallel? What happens to (2)? And if they're perpendicular? 
What if we permute the vectors, is the cross product commutative? What's the interpretation 
of the sign of the resulting vector (hint: think orientation, right-hand-rule). To clarify, what I 
mean by the area of the parallelogram is that if you draw the vectors u and v starting at the 
origin, then draw the vector u added to v tip-to-tail, and v added to u tip-to-tail, u+v and v+u 
will meet up, and now we have a parallelogram made of the four points in the plane {O,u,v,u+v} 
where O is the origin. Can you show why this works? 

In general, the dot product is a measure of parallel two vectors are, and the cross product is a 
measure of how perpendicular to vectors are. Here are two useful formulas (you can take them 
as definitions of the dot and cross products): 

𝑢 ∙ 𝑣 = ‖𝑢‖‖𝑣‖	𝐶𝑜𝑠(𝜃) 
𝑢 × 𝑣 = ‖𝑢‖‖𝑣‖	𝑆𝑖𝑛(𝜃) 

where 𝜃 is the angle between the two vectors u and v. Explore this, understand it! Note: the 
function ArcTan[x,y] in Mathematica takes a vector (x,y) and returns the angle from the positive 
x-axis, whereas if you give it ArcTan[y/x] you'll run into problems in the 2nd and 3rd quadrants 
since arctangent is only defined from – 𝜋/2 to 𝜋/2, this also handles the whole can't-divide-by-
zero-thing. 

Here are some other cool things you could do: 

Projection 
This is the projection of the vector u onto the vector v: 

𝑃𝑟I𝑢 =
𝑢 ∙ 𝑣

‖𝑢‖‖𝑣‖𝑣 

I'll help you out with the intuition: When you project one vector onto another, you want the 
resulting vector to be in the direction of the vector you projected onto, and to have a 
magnitude equal to the "amount of the first vector that's in that direction" – okay, say you're 
projecting onto the x unit vector for simplicity, then all you're doing is taking the x component 
of the vector, which is easy to visualize. For any projection, turn the paper so that the vector 
you're projecting onto is on the x-axis, then your projection amounts to putting a light source 
up above in the y direction and recording the shadow of the vector down onto the x-axis. This 
formula makes sense because the dot product of u and v gives the product of their magnitudes 



times the cosine of the angel between them, then divides by the magnitudes to just leave the 
cosine of the angle, and then multiplies that by v, giving you vCosθ, which should look eerily 
familiar – it looks the like x-component of the vector v, except here we've set it up so it's 
actually the u-component (imagine a change of basis from 𝑥L and 𝑦L to 𝑢L  and 𝑢′O  where u' is the 
unit vector perpendicular to u). 

Parallelepipeds and Pseudoscalars 

The triple product of three vectors u, v and w is: 

(𝑢 × 𝑣) ∙ 𝑤 

This returns a scalar… almost, it's actually something called a pseudoscalar. If you switch around 
the u, v and w, you will always get either the same result, or the same result with a negative 
sign – this amount to a change in orientation in the geometric interpretation I'm about to 
explain – this property is why it's a "pseudo"scalar, as an honest scalar is invariant of 
orientation. It turns out that the triple product of u, v and w is the volume of the parallelepiped 
that they construct, that is, the parallelogram that the three vectors draw in the same way that 
we draw a parallelogram with the cross product of two vectors. This is so interesting! Let's 
investigate. 
Questions: 
 Why is this the volume of the parallelepiped? Can you visualize that? 
 Why does their order not matter? Under which re-orderings does the sign not even  
  change? 
 What's the geometric interpretation of the negative sign, that is, can we visualize the  
  orientation difference? 
 The determinate definition of the cross product above is actually the volume of a certain 
  parallelepiped – can you see why? 

Good luck! Make something awesome that they could (nay, should) use in a Linear Algebra 
class. I realize pictures would have helped explain this stuff – but that's what I want you to 
make! I can draw on the board a bit in class if any of these concepts aren't clear. The final 
product should be cleaned up, that is, there should be a title, your name and the date on it, text 
in Text cells, and no extraneous code or outputs floating around. After making your model, you 
should play around with it, and maybe in a Text cell describe some interesting behavior you 
found. 


