
CSMC 412

Operating Systems

Prof. Ashok K Agrawala

Set 16

1

File System Internals

• File Systems

• File-System Mounting

• Partitions and Mounting

• File Sharing

• Virtual File Systems

• Remote File Systems

• Consistency Semantics

• NFS

Copyright 2018 Silberschatz, Galvin and Gagne 2

A Typical Storage Device Organization

Copyright 2018 Silberschatz, Galvin and Gagne 3

File Systems

• Files are stored on secondary storage devices
• SSD

• Hard Disks

• Optical Drives, Etc.

• System may have multiple storage devices – sliced up in partitions

• Partitions hold volumes

• Volumes hold File Systems

• Volume may span multiple partitions

Copyright 2018 Silberschatz, Galvin and Gagne 4

File Name Space

• Naming structure for files

• Names have to be unique

• Support for grouping files in folders/directories

• Full name -- Path name

• Local name – with respect to the current directory

Copyright 2018 Silberschatz, Galvin and Gagne 5

Mounting

• A File System must be mounted before it is available to processes

• Directory structure may be built out of multiple volumes

• Mounting - to make them available within the file system name
space.

• Mount Point – Location within the file structure where the file system
is to be attached.
• OS examines the structure to determine the type of file system

• Mount Point is an empty directory.

Copyright 2018 Silberschatz, Galvin and Gagne 6

Mounting

• OS verifies that the device contains a valid file system
• Reads the device directory

• Confirms the format of the directory

• Makes entries in the empty directory for the Mount Point to point to
the device directory

• Can traverse the directory structure going from file system to file
system

Copyright 2018 Silberschatz, Galvin and Gagne 7

Mounting – Volume mounted at /users

Copyright 2018 Silberschatz, Galvin and Gagne 8

Partitions and Mounting

• Partition can be a volume containing a file system (“cooked”) or raw – just a
sequence of blocks with no file system

• Master Boot block can point to boot volume or boot loader set of blocks that
contain enough code to know how to load the kernel from the file system
• Or a boot management program for multi-os booting

• Root partition contains the OS, other partitions can hold other OSes, other file
systems, or be raw
• Mounted at boot time
• Other partitions can mount automatically or manually

• At mount time, file system consistency checked
• Is all metadata correct?

• If not, fix it, try again

• If yes, add to mount table, allow access

Copyright 2018 Silberschatz, Galvin and Gagne 9

File Sharing

• Multiple Users need to share files when collaborating
• Sharing

• Naming

• Protection

• System mediates file sharing
• A can access files of B by default, or

• B must grant explicit access to A

• Maintain Additional attributes
• Owner/Group/Public attributes

• Access Control List

Copyright 2018 Silberschatz, Galvin and Gagne 10

Virtual File Systems

• Virtual File Systems (VFS) on Unix provide an object-oriented way of
implementing file systems

• VFS allows the same system call interface (the API) to be used for
different types of file systems
• Separates file-system generic operations from implementation details

• Implementation can be one of many file systems types, or network file system
• Implements vnodes which hold inodes or network file details

• Then dispatches operation to appropriate file system implementation
routines

Copyright 2018 Silberschatz, Galvin and Gagne 11

Virtual File Systems (Cont.)

• The API is to the VFS interface, rather than any specific
type of file system

Copyright 2018 Silberschatz, Galvin and Gagne 12

Virtual File System Implementation

• For example, Linux has four object types:
• inode, file, superblock, dentry

• VFS defines set of operations on the objects that must be
implemented
• Every object has a pointer to a function table

• Function table has addresses of routines to implement that function on that object
• For example:
• • int open(. . .)—Open a file
• • int close(. . .)—Close an already-open file
• • ssize t read(. . .)—Read from a file
• • ssize t write(. . .)—Write to a file
• • int mmap(. . .)—Memory-map a file

Copyright 2018 Silberschatz, Galvin and Gagne 13

Remote File Systems

• Systems connected through the Internet

• First approach
• Use FTP protocol to manually move files

• Second – Distributed File System
• Remote directories are visible from a local machine

• Third – World Wide Web
• Use a browser

• Wrapper for ftp

Copyright 2018 Silberschatz, Galvin and Gagne 14

Client- Server Model

• Most commonly used paradigm
• Server has the files

• Client wants to access them

• Many to many relationship

• Authentication
• Keys/Certificates…

• Unsecure authentication is most common

• Mounting

• Handling of requests

Copyright 2018 Silberschatz, Galvin and Gagne 15

Distributed Information Systems

• Distributed Naming Services
• Provide uniform access to information needed for remote computing
• Example

• DNS – Host name to network address translation

• Microsoft’s Common Internet File System (CIFS)
• Uses network information and user authentication information for network

login that the server uses to permit access
• Active Directory – Distributed naming structure to provide single name space

for users-
• Used by all clients and servers to authenticate users.

• LDAP – Lightweight Directory Access Protocol
• Secure distributed naming mechanism

Copyright 2018 Silberschatz, Galvin and Gagne 16

Failure Modes

• Local file system failures
• Corruption of metadata or hardware probems

• Remote file systems
• Additional failure modes

• Primarily due to network based access

• Recovery from failures
• Provisions have to be made

Copyright 2018 Silberschatz, Galvin and Gagne 17

Consistency Semantics

• Define how multiple users are to access a shared file system
simultaneously
• When modifications done by one user are visible to the other user

• UNIX Semantics
• Writes to an open file by a user are visible immediately to other users who

have this file open

• Users may share pointer to current location in a file. Thus advancing by one
user affects all sharing users

• Single file image – all accesses are interleaved

Copyright 2018 Silberschatz, Galvin and Gagne 18

The Sun Network File System (NFS)

• An implementation and a specification of a software system for
accessing remote files across LANs (or WANs)

• The implementation is part of the Solaris and SunOS operating
systems running on Sun workstations using an unreliable datagram
protocol (UDP/IP protocol) and Ethernet
• Later version support TCP also

Copyright 2018 Silberschatz, Galvin and Gagne 19

NFS (Cont.)

• Interconnected workstations viewed as a set of independent
machines with independent file systems, which allows sharing among
these file systems in a transparent manner
• A remote directory is mounted over a local file system directory

• The mounted directory looks like an integral subtree of the local file system, replacing
the subtree descending from the local directory

• Specification of the remote directory for the mount operation is
nontransparent; the host name of the remote directory has to be provided
• Files in the remote directory can then be accessed in a transparent manner

• Subject to access-rights accreditation, potentially any file system (or directory
within a file system), can be mounted remotely on top of any local directory

Copyright 2018 Silberschatz, Galvin and Gagne 20

NFS (Cont.)

• NFS is designed to operate in a heterogeneous environment of
different machines, operating systems, and network architectures;
the NFS specifications independent of these media

• This independence is achieved through the use of RPC primitives built
on top of an External Data Representation (XDR) protocol used
between two implementation-independent interfaces

• The NFS specification distinguishes between the services provided by
a mount mechanism and the actual remote-file-access services

Copyright 2018 Silberschatz, Galvin and Gagne 21

Three Independent File Systems

Copyright 2018 Silberschatz, Galvin and Gagne 22

Mounting in NFS

Mounts Cascading mounts

Copyright 2018 Silberschatz, Galvin and Gagne 23

NFS Mount Protocol

• Establishes initial logical connection between server and client
• Mount operation includes name of remote directory to be mounted and

name of server machine storing it
• Mount request is mapped to corresponding RPC and forwarded to mount server

running on server machine
• Export list – specifies local file systems that server exports for mounting, along with

names of machines that are permitted to mount them

• Following a mount request that conforms to its export list, the server
returns a file handle—a key for further accesses

• File handle – a file-system identifier, and an inode number to identify the
mounted directory within the exported file system

• The mount operation changes only the user’s view and does not affect the
server side

Copyright 2018 Silberschatz, Galvin and Gagne 24

NFS Protocol

• Provides a set of remote procedure calls for remote file operations. The
procedures support the following operations:
• searching for a file within a directory
• reading a set of directory entries
• manipulating links and directories
• accessing file attributes
• reading and writing files

• NFS servers are stateless; each request has to provide a full set of
arguments (NFS V4 is just coming available – very different, stateful)

• Modified data must be committed to the server’s disk before results are
returned to the client (lose advantages of caching)

• The NFS protocol does not provide concurrency-control mechanisms

Copyright 2018 Silberschatz, Galvin and Gagne 25

Three Major Layers of NFS Architecture

• UNIX file-system interface (based on the open, read, write, and close calls,
and file descriptors)

• Virtual File System (VFS) layer – distinguishes local files from remote ones,
and local files are further distinguished according to their file-system types
• The VFS activates file-system-specific operations to handle local requests according

to their file-system types

• Calls the NFS protocol procedures for remote requests

• NFS service layer – bottom layer of the architecture
• Implements the NFS protocol

Copyright 2018 Silberschatz, Galvin and Gagne 26

Schematic View of NFS Architecture

Copyright 2018 Silberschatz, Galvin and Gagne 27

NFS Path-Name Translation

• Performed by breaking the path into component names and
performing a separate NFS lookup call for every pair of component
name and directory vnode

• To make lookup faster, a directory name lookup cache on the client’s
side holds the vnodes for remote directory names

Copyright 2018 Silberschatz, Galvin and Gagne 28

NFS Remote Operations

• Nearly one-to-one correspondence between regular UNIX system calls and
the NFS protocol RPCs (except opening and closing files)

• NFS adheres to the remote-service paradigm, but employs buffering and
caching techniques for the sake of performance

• File-blocks cache – when a file is opened, the kernel checks with the
remote server whether to fetch or revalidate the cached attributes
• Cached file blocks are used only if the corresponding cached attributes are up to date

• File-attribute cache – the attribute cache is updated whenever new
attributes arrive from the server

• Clients do not free delayed-write blocks until the server confirms that the
data have been written to disk

Copyright 2018 Silberschatz, Galvin and Gagne 29

