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File System Internals

• File Systems

• File-System Mounting

• Partitions and Mounting

• File Sharing

• Virtual File Systems

• Remote File Systems

• Consistency Semantics

• NFS
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A Typical Storage Device Organization

Copyright 2018 Silberschatz, Galvin and Gagne 3



File Systems

• Files are stored on secondary storage devices
• SSD

• Hard Disks

• Optical Drives,  Etc.

• System may have multiple storage devices – sliced up in partitions

• Partitions hold volumes

• Volumes hold File Systems

• Volume may span multiple partitions
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File Name Space

• Naming structure for files

• Names have to be unique

• Support for grouping files in folders/directories

• Full name  -- Path name

• Local name – with respect to the current directory
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Mounting

• A File System must be mounted before it is available to processes

• Directory structure may be built out of multiple volumes 

• Mounting  - to make them available within the file system name 
space.

• Mount Point – Location within the file structure where the file system 
is to be attached.
• OS examines the structure to determine the type of file system

• Mount Point is an empty directory.
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Mounting

• OS verifies that the device contains a valid file system
• Reads the device directory

• Confirms the format of the directory

• Makes entries in the empty directory for the Mount Point to point to 
the device directory

• Can traverse the directory structure going from file system to file 
system
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Mounting – Volume mounted at /users
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Partitions and Mounting

• Partition can be a volume containing a file system (“cooked”) or raw – just a 
sequence of blocks with no file system

• Master Boot block can point to boot volume or boot loader set of blocks that 
contain enough code to know how to load the kernel from the file system
• Or a boot management program for multi-os booting

• Root partition contains the OS, other partitions can hold other OSes, other file 
systems, or be raw
• Mounted at boot time
• Other partitions can mount automatically or manually

• At mount time, file system consistency checked
• Is all metadata correct?

• If not, fix it, try again

• If yes, add to mount table, allow access
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File Sharing

• Multiple Users need to share files when collaborating
• Sharing

• Naming

• Protection

• System mediates file sharing
• A can access files of B by default, or

• B must grant explicit access to A

• Maintain Additional attributes
• Owner/Group/Public attributes

• Access Control List
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Virtual File Systems

• Virtual File Systems (VFS) on Unix provide an object-oriented way of 
implementing file systems

• VFS allows the same system call interface (the API) to be used for 
different types of file systems
• Separates file-system generic operations from implementation details

• Implementation can be one of many file systems types, or network file system
• Implements vnodes which hold inodes or network file details

• Then dispatches operation to appropriate file system implementation 
routines
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Virtual File Systems (Cont.)

• The API is to the VFS interface, rather than any specific 
type of file system
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Virtual File System Implementation

• For example, Linux has four object types:
• inode, file, superblock, dentry

• VFS defines set of operations on the objects that must be 
implemented
• Every object has a pointer to a function table

• Function table has addresses of routines to implement that function on that object
• For example:
• • int open(. . .)—Open a file
• • int close(. . .)—Close an already-open file
• • ssize t read(. . .)—Read from a file
• • ssize t write(. . .)—Write to a file
• • int mmap(. . .)—Memory-map a file
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Remote File Systems

• Systems connected through the Internet

• First approach
• Use FTP protocol to manually move files

• Second – Distributed File System
• Remote directories are visible from a local machine

• Third – World Wide Web
• Use a browser

• Wrapper for ftp
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Client- Server Model

• Most commonly used paradigm 
• Server has the files

• Client wants to access them

• Many to many relationship

• Authentication
• Keys/Certificates…

• Unsecure authentication is most common

• Mounting

• Handling of requests
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Distributed Information Systems

• Distributed Naming Services
• Provide uniform access to information needed for remote computing
• Example

• DNS – Host name to network address translation

• Microsoft’s Common Internet File System (CIFS)
• Uses network information and user authentication information for network 

login that the server uses to permit access
• Active Directory – Distributed naming structure to provide single name space 

for users-
• Used by all clients and servers to authenticate users. 

• LDAP – Lightweight Directory Access Protocol
• Secure distributed naming mechanism
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Failure Modes

• Local file system failures 
• Corruption of metadata or hardware probems

• Remote file systems 
• Additional failure modes

• Primarily due to network based access

• Recovery from failures
• Provisions have to be made

Copyright 2018 Silberschatz, Galvin and Gagne 17



Consistency Semantics

• Define how multiple users are to access a shared file system 
simultaneously
• When modifications done by one user are visible to the other user

• UNIX Semantics
• Writes to an open file by a user are visible immediately to other users who 

have this file open

• Users may share pointer to current location in a file. Thus advancing by one 
user affects all sharing users

• Single file image – all accesses are interleaved
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The Sun Network File System (NFS)

• An implementation and a specification of a software system for 
accessing remote files across LANs (or WANs)

• The implementation is part of the Solaris and SunOS operating 
systems running on Sun workstations using an unreliable datagram 
protocol (UDP/IP protocol) and Ethernet
• Later version support TCP also
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NFS (Cont.)

• Interconnected workstations viewed as a set of independent 
machines with independent file systems, which allows sharing among 
these file systems in a transparent manner
• A remote directory is mounted over a local file system directory

• The mounted directory looks like an integral subtree of the local file system, replacing 
the subtree descending from the local directory

• Specification of the remote directory for the mount operation is 
nontransparent; the host name of the remote directory has to be provided
• Files in the remote directory can then be accessed in a transparent manner

• Subject to access-rights accreditation, potentially any file system (or directory 
within a file system), can be mounted remotely on top of any local directory
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NFS (Cont.)

• NFS is designed to operate in a heterogeneous environment of 
different machines, operating systems, and network architectures; 
the NFS specifications independent of these media

• This independence is achieved through the use of RPC primitives built 
on top of an External Data Representation (XDR) protocol used 
between two implementation-independent interfaces

• The NFS specification distinguishes between the services provided by 
a mount mechanism and the actual remote-file-access services 
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Three Independent File Systems
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Mounting in NFS 

Mounts Cascading mounts
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NFS Mount Protocol

• Establishes initial logical connection between server and client
• Mount operation includes name of remote directory to be mounted and 

name of server machine storing it
• Mount request is mapped to corresponding RPC and forwarded to mount server 

running on server machine 
• Export list – specifies local file systems that server exports for mounting, along with 

names of machines that are permitted to mount them 

• Following a mount request that conforms to its export list, the server 
returns a file handle—a key for further accesses

• File handle – a file-system identifier, and an inode number to identify the 
mounted directory within the exported file system

• The mount operation changes only the user’s view and does not affect the 
server side 
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NFS Protocol

• Provides a set of remote procedure calls for remote file operations.  The 
procedures support the following operations:
• searching for a file within a directory 
• reading a set of directory entries 
• manipulating links and directories 
• accessing file attributes
• reading and writing files

• NFS servers are stateless; each request has to provide a full set of 
arguments  (NFS V4 is just coming available – very different, stateful)

• Modified data must be committed to the server’s disk before results are 
returned to the client (lose advantages of caching)

• The NFS protocol does not provide concurrency-control mechanisms
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Three Major Layers of NFS Architecture 

• UNIX file-system interface (based on the open, read, write, and close calls, 
and file descriptors)

• Virtual File System (VFS) layer – distinguishes local files from remote ones, 
and local files are further distinguished according to their file-system types
• The VFS activates file-system-specific operations to handle local requests according 

to their file-system types 

• Calls the NFS protocol procedures for remote requests

• NFS service layer – bottom layer of the architecture
• Implements the NFS protocol
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Schematic View of NFS Architecture 
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NFS Path-Name Translation

• Performed by breaking the path into component names and 
performing a separate NFS lookup call for every pair of component 
name and directory vnode

• To make lookup faster, a directory name lookup cache on the client’s 
side holds the vnodes for remote directory names
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NFS Remote Operations

• Nearly one-to-one correspondence between regular UNIX  system calls and 
the NFS protocol RPCs (except opening and closing files)

• NFS adheres to the remote-service paradigm, but employs buffering and 
caching techniques for the sake of performance 

• File-blocks cache – when a file is opened, the kernel checks with the 
remote server whether to fetch or revalidate the cached attributes
• Cached file blocks are used only if the corresponding cached attributes are up to date

• File-attribute cache – the attribute cache is updated whenever new 
attributes arrive from the server

• Clients do not free delayed-write blocks until the server confirms that the 
data have been written to disk
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