February 19

CSMC 412

Operating Systems
Prof. Ashok K Agrawala

© 2019 Ashok Agrawala

CMSC412 Set 2

Intel x86 Architecture

February 19 CMSC412 Set 2 . _ Creative Commgns
Attribution-NonCommercial-ShareAlike 3.0 Unported License

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Contents

Intel x86 Architecture

e Overview

e Register

e Instruction

e Memory Management
Interrupt and Exception
e Task Management
Input/Output

Stack Manipulation

e Summary

Intel x86 Architecture

- Overview

eeeeeeeeeeeeeeeeeeeee

Basic Execution Environment.

Basic Program Execution Registers

Elght 32-bit General-Purpose Reglsters
Reglsters
Slx 16-blt
Reglsters Segment Reglsters
[32-blts | EFLAGCS Reglster
| 32-blts | EIP {Instructlon Pointer Reglster)

FPU Registers

Elght 80-bit Floating-Polnt
Reaqlsters Data Reglsters
16 bits Control Reglster
16 bits Status Reglster
16 bits Tag Reglster
[] Opcode Reglster (11-bits)
| 48 bits | FPU Instructlon Polnter Reglster
| 48 blts | FPU Data (Operand) Polnter Reglster

February 19

Memory Management Registers

GDTR

LDTR

IDTR

TR

Control Registers

CRo

CRi1

CR2

CR3

CR4

MMX Registers

Elght 64-bit
Reglsters MMX Reglsters
XMM Reqgisters
Elght 128-blt
Reglsters
32-bits |

Debug Registers

cmscal2 sExtended Control Register

Address Space*
2732 -1

¥MM Reglsters

MY C5R Reglster

Operation Mode

Protected mode

e This mode is the native state of the processor.

e Support virtual-8086 mode to execute “real-address mode”
8086 software in a protected, multi-tasking environment.

e Segmentation, 32bit addressing

Real mode

e This mode implements the programming environment of the
Intel 8086 processor with extensions (such as the ability to
switch to protected or system management mode).

e The processor is placed in real-address mode following power-
up or a reset.

* 16bit mode, Segmentation, 20bit addressing

Memory Addresses

Logical Address
e Included in the machine language instruction
» the address of an operand or of an instruction
o Consists of segment(16bit) and offset(32bit)

offset - distance from the start of the segment to the actual address

Linear Address (known as virtual address)
* A single 32-bit unsigned integer
e Range: 0x00000000~ Oxffffffff(4GB)

Physical Address

e Used to address memory cells included in memory chips
* Represented as 32-bit unsigned integer

LogicalAddress>

February 19

-

SEGMENTATION
UNIT

_

Linear Address>

PAGING
UNIT

MMU(Menclor\é Marslgt%ement Unit)

MSC412

Physical Address>

Memory Models

Flat Model
Linear Address
[1 >
Linear
Address
Space®

Segmented Model

Segments

Offset (effective address)

— N

Logical Space™
dedgress Segment Selector
-
Real-Address Mode Model
Linear Address
Offset Space Divided | - — {
 — ~Into Equal
Logical Sized Segments | — _ |
Address >egment Selector -

e |

* The linear address space
can be paged when using the

flat or segmented model.
February 19

-

CMSC412 Set 2

*No segmentation

*Code, Data, stacks are all contained inthis
address space.

* 32 bitaddressing

*Code, Data, stacks are typically containedin
separate segments for better isolation.

+32 bit addressing (32 bit offset, 16 bitseg.
selector)

*Compatibility mode for 8086 processor.
*20 bit addressing (16 bit offset, 16 seg.
selector)

Privilege Level

Code modules in lower privilege segments can only access
modules operating at higher privilege segments by means
of a tightly controlled and protected interface called gate.

Attemﬁts to access higher privile%e segments without going
though a protection gate and without having sufficient
access rights causes a general-protection exception(#GP) to
be generated.

Protection Rings

Operating
System —
Kernel

Operating System
Services (Device ——}
Drivers, Etc.)

Applications —__

Level 3
Highest Lowest
0 1 2 3

I I I l

Privilege Levels

Intel x86 Architecture

. Register

eeeeeeeeeeeeeeeeeeeee

System Level Registers and Data

Structures

EFLAGS Register E Iy Iﬁddress - Code, Data or
| : | Linear Address Stack Segment
Control ReglstersCR4 S—TS . Task-State
egment Selector Segment (TSS)
CR3 Pt i . A Task
- — =i Code
CR2 | Register | R
CR1 L_ _| pPata
- CRO Global Descriptor —
Task Reglster Table (GDT)
I |
[Segment Sel.} - | Seg. Desc. Irierrupt Handler
Current- — goce |
Interrupt |TSS Seg. Sel.| — #{ TSS Desc. TSS |_ Stack
Vector =D
——— 39 Seg. Desc.
Interrupt Descriptor ;- g Task-State
Table (IDT) | +— 3 TSS Desc Segmer_!t (TSS) Task
| | [~ 'L _ Code
Interrupt Gater — — - | LDT Desc. A Data
' I i Stack
Task Gate [---- -
;
| Trap Gate | ——+]
| Local Descriptor Exception Handler
X L Table (LDT) > Code |
[Current- — Stack
IDTR Call-Gate | Seg. Desc. %2 L
Segment Selector
I - CallGate |-—|-- ’L Prgt»ected Procedure
XCRO (XFEM) DT -« .

February 19

CMSC412 Set 2

TSS I_ Stack

11

System Level Registers and Data
Structures (cont’d)

Linear Address Space

Linear Addr.

Linear Address

February 19

0

»| Dir |

Table |

Offset

=

Page Directory

Pg. Dir. Entry

-

CR3"

*Physical Address

Page Table

-

Pqg. Tbl. Entry

-

CMSC412 Set 2

Page

Physical Addr.

This page mapping example is for 4-KByte pages
and the normal 32-bit physical address size.

12

Basic Program Execution Registers

General-Purpose Registers
» For storing operands and pointers
e ESP — Stack pointer in the SS segment
e EBP — Frame pointer on the stack
e ECX — Counter for string and loop operations
» ESI — Source pointer for string operations
e EDI — Destination pointer for string operations.

General-Purpose Registers

31 1615 87 0 16-bit 32-bit
AH AL AX EAX

BH BL BX EBX

CH CL CX ECX

DH DL DX EDX

BP EBP

S ESI

DI EDI

SP ESP

Basic Program Execution Registers
(cont’d)

Segment Registers

» It holds 16-bit segment selectors. A segment selector is a special
pointer that identifies a segment in memory.

» To access a particular segment in memory, the segment selector for
that segment must be present in the appropriate segment register.

Code
Segment

Segment Registers

Data
Segment

s r-**

DS
es

Stack
Segment

All segments
are mapped
to the same
linear-address
space

Data
Segment

Data
Segment

Data
Segment

Basic Program Execution Registers
(cont’d)

Segment Selectors(16bit)

e Index(13bit) — Segment Descriptor entry in GDT, LDT

e Tl (Table Indicator)(1bit)

« 0: Segment Descriptor is stored in GDT
« 1:Segment Descriptor is stored in LDT

e RPL(2bit) — Requested Privilege Level (CPL in CS)

Segment Selector

5 3
INDEX TI RPL
Table Indicator ?
o=GDT

1=LDT

Requested Privilege Level (RPL)
Current Privilege Level (CPL) in CS
o = the highest privilege level, kernel mode
1 = the lowest one, user mode

Basic Program Execution Registers
(cont’d)

Default Segment Selection Rules

e CS : Instructions
« All instruction fetches

o SS: Stack

« All stack pushes and pops. Any memory reference which uses the ESP or EBP
register as a base register.

e DS : Local Data

- All data references, except when relative to stack or string destination.

o ES : Destination Strings
» Destination of string instructions, eg. MOVS.

Basic Program Execution Registers
(cont’d)

EFLAGS Regist
egls er 313029282726252423 222120191817 161514131211109 8 76 54 3 2 1 0

VIVIAlv R[N olo|i|t|s|z|,|alalPl,|c
1A 0

|
) |
M F|C(T| P |FIF|F|F|F|F|C|F|OIF|T|F
P|F i

e The EFLAGS register report on the

o—

status of the program being executed |
and allows limited (application program X {?ri'zlg'.ﬁ'tiﬁn.mpendngmp)J

level) control of the processor. X Algoment Check (AC) —
. X Virtual-8086 Mode (VM)
e Some of the flags in the EFLAGS X Rosumo Fiag (RF)

register can be modified directly, using X5 e tetor
special purpose instructions. There are gy x e toasis fg 1)

no instructions that allow the whole X lrep oo (1)

. . .o S Zero Flag (ZF
register to be examined or modified S vy Cory Flog ()
diI’GCﬂy. S Camy Fiag (CF)

» When suspending a task, the processor ¢ i s conol Fia
automatically saves the state of the e
EFLAGS register in the task statement Alays st 0 valus provously a0
segment(TSS) for the task being
suspended. When binding itself to a
new task, the task processor loads the
EFLAGS register with data from the new
task’s TSS.

Basic Program Execution Registers
(cont’d)

EIP (Instruction Pointer)

e The instruction pointer (EIP) register contains the offset in the current
code segment for the next instruction to be executed.

It is advanced from one instruction boundary to the next in straight-
line code or it is moved ahead or backwards by a number of
instructions when executing JMP Jcc, CALL, RET, and IRET instructions.

Memory Management Registers

The processor provides four memory-management
registers (GDTR, LDTR, IDTR an TR) that specify the
locations of the data structures which control
segmented memory management. Special instructions
are provided for loading and storing these registers.

System Table Registers

47(79) 16 15 0
GDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
IDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
System Segment Segment Descriptor Registers (Automatically Loaded)
Registers 3
0 Attributes
Reg-irgtsekr Seg. Sel. 32(64)-bit Linear Base Address Segment Limit
LDTR Seg. Sel. 32(64)-bit Linear Base Address Segment Limit

February 19 CMSC412 Set 2 19

Control Registers

Control registers determine operating mode of the
processor and the characteristics of the currently
running task.

31(63) 18 1413121110 96876543210 *CR4: Contains a group of flags that
SV pleimlp|p|.|T|P|v : :
Reserved (set to 0) vulo o cl2|€|2 15|37 M| cra enable geveral archl'tectural extensions,
E|E =EEEELPLE and indicate operating system or
0SXSAVE— | osxuMEXCPT— executive support for specific processor
OSFXSR capabilities.
383 121 54 3 2
PP) . .
Page-Directory Base clw CR3 * CR3: physical address of the pagedirectory
p|T (PDBR)
31(63) o
, *CR2: page fault linear address
Page-Fault Linear Address CR2

- ; «CRo: System control flag

* PE flag

CR1 - 0/1: real mode/protected mode

* PG flag

2130 29 28 1918 17 16 15 6543010 - o: line'ar address == physical address
- 1: paging enable

c|o|w [P NIE|TIEIMIE] CRO * TS flag - |

- It causes the CPU to trap (int 7) if thefloating

Fey point unit is used. It is used to restore FP10 state
Reserved

lazily after a taskswitch.

Intel x86 Architecture

. Instruction

eeeeeeeeeeeeeeeeeeeee

General Purpose Instructions

The general-purpose instructions perform basic data movement,
arithmetic, logic, program flow, and string operations that

programmers commonly use to write application and system
software to run.

Data Transfer Instructions Control Transfer Instructions
« MQV, CMOQV, PUSH, POP XCHG, ... e JMP CALL, INT, RET, IRET, INTO,
Binary Arithmetic Instructions BOUND, ...
e ADD, SUB, INC, DEC, ... String Instructions
Decimal Arithmetic Instructions e MOVS, LODS, CMPS, ...
Logical Instructions IO Instructions
e AND, OR, XOR, ... e IN, OUT, ...
Shift and Rotate Instructions EFLSGS Control Instructions
e SAR, SAL, ROR, ROL, ... e STC CLG ...
Bit and Byte Instructions Segment Register Instructions
e BT SET TEST, ... e LDS, LES, LFS, LGS, LSS

Misc. Instructions
e NOP ...

System Instructions

The following system instructions are used to control those
functions of the processor that are provided to support for

operating systems and executives.

Manipulate memory management Pointer Validation
register e LAR, LSL, VERR, VERW, ARPL
e LGDT, LLDT, LTR, LIDT, SGDT, SLDT, Misc.
SIDT, STR

Load and store control registers

e MOV {CRO~CR4}, CLI, STI
Invalidate Cache and TLB

e INVD, WBINVD, INVLPG
Performance monitoring

e RDPMC, RDTSC, RDTSCP

e LOCK, CLTS, HLT

Fast System Call
o SYSENTER, SYSEXIT

Privileged instructions in red
which can be executed only
in ring o.

February 19 CMSC412 Set 2

23

Intel x86 Architecture

: Memory Management

eeeeeeeeeeeeeeeeeeeee

Segmentation & Paging

Segmentation

e provides a mechanism for dividing the processor’s linear
address space into smaller protected address spaces
called segments.

e translate logical address to linear address

Paging

e provides a mechanism for implementing a conventional
demand-paged, virtual-memory system where sections of
a program’s execution environment are mapped into
physical memory as needed. It can also be used to
provide isolation between multiple tasks.

e translate linear address to physical address

Segmentation & Paging (cont’d)

Logical Address
(or Far Pointer)

Segment 1

Physical
Address
Space

b e i]

b — = -

Selector Offset Linear Address
[W] I Space
TI
Linear Address
GDT/LDT —{ Dir | Table | Offset |
Segment
Page Table
Segment
Descriptor
= (|| B Page Directory
Lin. Addr. —
_______ — = Entry
> A | Entry -
Segmentﬁ_‘_/‘
Base Address
~—— Page — 1CR3
’—— Segmentation | Paging

February 19

CMSC412 Set 2

Segmentation

Logical address to linear address translation

0 31(63) 0

, 15
Ab%?:acsasl Seq. Selector | Offset (Effective Address) |

Descriptor Table

Segment

Base Address
' L |+
Descriptor .

31(63) 0
Linear Address |

Segment Selector

15 3210 *Toreduce address translation time
Index TIRPL and coding complexity, the processor
oble Indicator provides registers for holding up to 6
0=GDT segment selectors.
1=LDT * CS, SS, DS, ES, FS, GS

Requested Privilege Level (RPL)
Current Privilege Level (CPL) in CS
o = the highest privilege level, kernel mqde
1 = the lowest one, user mode

Segmentation (cont'd

Global and local descriptor tables

Global Local
Descriptor Descriptor
Table (GDT) Table (LDT)
T ¢ ¢
I TI=0 TI=1
Segment
Selector
56 56
48 48
40 40
32 32
24 24
16 16
8 8
First Descriptor in
GDT is Not Used

a"’o

0
\(‘ \\
GDTR Register] * LDTR Register |
Limit [Limit

Base Address Base Address

Seg. Sel.

Segmentation (cont’d)

Segment Descriptors

e It a s data structure in a GDT or LDT that provides the
processor with the size and location of a segment, as well as

access control and status information.

31 242322212019 161514 13 12 11 8 7 0
D| [A| Seq. D
Base 31:24 G|/|L|v| Lmt [P| p [s| Type Base 23:16 4
Bl |L| 19:16 L
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0
i — 64-bit code segment (IA-32e mode only)
AVL — Available for use by system software

BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

» DPL — Descriptor privilege level
G — Granularity

B LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)

February 19 TYPE — Segment type 11: Code/Data ()/5c417 set 30: Expansion-direction
9: Write-enable 8: Accessed

29

Paging

Linear address to physical address translation

Linear Address
31 22 21 12 11 0
DIRECTORY TABLE OFFSET
4KB Page frame
Page Table
)
Page Directory vy
) ¢ >
Y

cr2
|:| Page fault address

cro
|:| Cro.PG =1: paging enabled

Paging (cont’d)

Page Directories and Page Tables entry field
e Available for system programmer’s use
e Global page
e Page size(0 indicates 4 Kbytes)

* Reserved(set to 0) / Dirty
e Accessed

e Cache disabled

e Write-through

e User/Supervisor

e Read/Write

e Present

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 Y e e
p P{P|U|R

Page-Table Base Address Avail. | G g CIW|/|/

D|T|S|W

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 4 3 2 1
P|P{U|R

Page Base Address Avail. |G| o C|\W|/ |/

DT |S|W

Protection

Privilege Level Checking

e The segment-protection mechanism recognizes 4
privilege levels, numbers from 0 to 3. The greater
numbers mean lesser privileges.

e Privilege levels are checked when the segment
selector of a segment descriptor is loaded into a
segment register.

* When the processor detects a privilege level
violation, it generates a general-protection
exception(#GP).

Protection (cont’d)

To carry out privilege-level checks between code segments and data
segments, the processor recognizes the following three types of privilege

levels:

e Current Privilege Level (CPL)

- The privilege level of the currently executing task
It is equal to the privilege level of the code segment from which instructions are

being fetched.
e Descriptor Privilege Level (DPL)
« The privilege level of the segment of gate.

» Requested Privilege Level (RPL)
« It is an override privilege level that is assigned to segment selectors.

CS Register
CPL

Segment Selector
For Data Segment

RPL

Privilege
Check

Data-Segment Descriptor

DPL

* Privilege check for dataaccess

Y \Fl

Intel x86 Architecture

. Interrupt and Exception

eeeeeeeeeeeeeeeeeeeee

Gate

The architecture also defines a set of special descriptors called gates (call
gates, interrupt gates, trap gates, and task gates). These ﬁrowde
protected gateways to system procedures and handlers that may operate

at a different privilege level than application programs and most
procedures.

For example, a CALL to a call gate can provide access to a procedure in a
code segment that is at the same or a numerically lower privilege level
(more privileged) than the current code segment. To access a procedure
through a call gate, the calling procedure supplies the selector for the call
gate. The processor then Eer orms an access rights check on the call gate,
comparing the CPL with the privilege level of the call gate and the
destination code segment pointed to by the call gate.

If access to the destination code segment is allowed, the processor gets
the segment selector for the destination code segment and an offset into
that code segment from the call gate. If the call requires a change in
privilege level, the processor also switches to the stack for the targeted
privilege level. The segment selector for the new stack is obtained from

the TSS for the currently running task. Gates also facilitate transitions
between 16-bit and 32-bit code segments, and vice versa.

Interrupt and Exception handling

External interrupts, software interrupts and exceptions are handled

through the interrupt descriptor table (IDT). The IDT stores a collection of
gate descriptors that provide access to interrupt and exception handlers.
'(Iigﬁ_llqi)near address for the base of the IDT is contained in the IDT register

Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors.
To access an interrupt or exception handler, the processor first receives an
interrupt vector (interrupt number) from internal hardware, an external
interruBt controller, or from software by means of an INT, INTO, INT 3, or
BOUND instruction.

The interrupt vector provides an index into the IDT. If the selected gate
descriptor is an interrupt gate or a trap gate, the associated handler
procedure is accessed In @ manner similar to calling a procedure through
a call gate. If the descriptor is a task gate, the handler is accessed
through a task switch.

Relationship of the IDTR and IDT

February 19

IDTR Register
47 16 15 0
IDT Base Address IDT Limit
i Interrupt
Descriptor Table (IDT)
-
(Gate for
Interrupt #n (n—1)=8
Gate for
Interrupt #3 16
(Gate for
Interrupt #2 8
Gate for
: S Interrupt #1 0
31 0

CMSC412 Set 2

37

Gate Descriptor

Call Gate
31 1615141312 11 87 6 54 0
D Type
Offset in Segment 31:16 Pl P vp o000 %gﬁm 4
L |of1 |1 |0 ‘ 0
31 1615 0
Segment Selector Offset in Segment 15:00 0

Task Gate
3 1615141312 B 7
D
Pl P |O0O010 1
L
3 1615
TSS Segment Selector
Interrupt Gate
31 1615141312 8 7
D
Offset 31..16 Fl P |0D110|{00
L
3 1615
Segment Selector Offset 15..0
Trap Gate
3 1615141312 8 7
D
Offset 31..16 PP |0D11 1|00
L
31 1615
Segment Selector Offset 15..0

DPL Descriptor Privilege Level
Offset Offset to procedure entry point
P Segment Present flag
Selector

Segment Selector for destination code segment

F%bruary 198ize of gate: 1 = 32 bits; 0 = 16 bits

l:l Reserved

* While transferring control to the proper
segment, the processor clears the EFLAGS.IF
flag, thus disabling further maskableinterrupts.

*While transferring control to the proper
segment, the processor does not modifythe
EFLAGS.IF flag.

* IDT : Task Gate, Interrupt, Trap Gate
* LDT : Call Gate

CMSC412 Set 2

Executing a handler

TSS for Interrupt-
Handling Task

Destination IDT
IDT Code Segment
Interrupt
Offset Procedure Interrupt
Interrupt Interrupt or —"‘@—* Vector Task Gate
Vector Trap Gate
> TSS Selector
Segment Selector
GDT
GDT or LDT
Base
Address
- Segment — TSS Descriptor
= Descriptor

* Exception or Interrupt Procedurecall

Y

T5S
Base
Address

* Interrupt Task Switch

Interrupt and Exception Vectors

0 ~ 31 (fixed)
e Exceptions and nonmaskable interrupts
 6: Invalid Opcode

« 13 : general protection exception
« 14 : page fault

32 ~ 47

e Maskable interrupts

e Interrupts caused by IRQs
48 ~ 255

e S/W interrupts

e Linux uses only one of them,
« 128 : to implement system calls

Intel x86 Architecture

: Task Management

eeeeeeeeeeeeeeeeeeeee

Task Structure

A task is made up of two parts: a task execution space and a task-
state segment(TSS).

A task is identified by the segment selector for its TSS. When a
task is loaded into the processor for execution, the segment
selector, base address, limit, and segment descriptor attributes for
TSS are loaded into the task register.

LDT GDT TSS
g Code t Task Gate
I_,. eqmen
ask-Ste Data I
nggl'ﬁteql’t]? I—,. Segment Task Gate | TSS Descriptor
(1SS) Stack X
> Segment
(Current Priv.
Level)
Stack Seq.
= Priv. Level 0 T
Stack Seq.
| » Priv. Level 1
Task Register Stack Task Gate

| | » Segment
CR3 (Priv. Level 2)

Task State Segment

£ | 15 0
. I/0 Map Base Address Reserved |T 100
Reserved LDT Segment Selector a6
Reserved GS 92
Reserved Fs a8
Reserved DS g4
Resenved 35 a0
Reserved cg 76
Reserved ES 72
EDI it}
ESI 64
EEF 60
ESP 56
EEBX 52
EDX 48
ECX 44
EAX 40
EFLAGS 36
EIP 32
CR3 (PFDER) 28
Reserved | 557 24
ESP? 20 ’SSO, SSI, SS2
Reserved | ss1 18 - Stack Segment for ring o, 1,2
ESP1 12 *ESPo, ESP1, ESP2
Reserved | SS0 - Stack pointer for ring o, 1,2
ESFO 4
Reserved | Previous Task Link

) 19 | Reserved bits. Setto 0.

H/W Task Switching

The processor transfers execution to another task

iIn one of following cases

e JMP or Call instruction to a procedure located in a
different task using far pointer

« to a TSS descriptor in the GDT.
 to a task-gate descriptor in the GDT or the current LDT.

e An interrupt or exception vector points to a task-
gate descriptor in the IDT.

e The current task executes an IRET when the NT flag
In the EFLAGS register is set.

H/W Task Switching (cont’d)

The processor performs the following operations when
switching to a new task

e Obtains the TSS segment selector for the new task.

e Check that the current (old) task is allowed to switch to
the new task. (CPL/DPL/RPL)

o Saves the state of the current (old) task in the current
task’s TSS.

e Loads the task register with the segment selector and
descriptor for the new task’s TSS.

e The TSS state is loaded into the processor. This includes
the LDTT, CR3, EFLAGS, EIP the general purpose registers,
and the segment selectors.

e The descriptor associated with the segment selectors are
loaded and qualified.

*

Intel x86 Architecture
: Input/Output

eeeeeeeeeeeeeeeeeeeee

/O Port Addressing

The processor permits applications to access /O ports
in either of two ways:

e Through a separate I/O address space

- Handled though a set of I/O instructions and a special /O
protection mechanism

« Writes to I/O ports are guaranteed to be completed before the
next instruction in the instruction stream is executed.

e Through memory-mapped |/O

« Accessing |/O ports through memory-mapped 1/O is handled
with the processors general-purpose move and string

instructions, with protection provided through segmentation or
paging.

/O Address Space

The processor’s |/O address space is separate and distinct from the
physical-memory address space.

The 1I/O address space consists of 216 (64K) individually addressable 8-bit
I/O ports, numbered 0 through FFFFH.

I/O port addresses OF8H through OFFH are reserved.

Physical Memory

FFFF
EPROM

I/O Port
I/O Port
I/O Port

RAM

/O port protection

When accessing 1I/O ports through the |/O address space,
two protection devices control access:
e /O instructions can be executed only if the current privilege
level (CPL) of the program or task currently executing is less
than or equal to the IOPL.

e Any attempt by a less privileged program or task to use an I/O
sensitive instruction results in a general-protection exception
(#GP) being signaled.

e The I/O permission bit map in the TSS can be used to modify
the effect of the IOPL on I/O sensitive instructions, allowing
access to some 1/O ports by less privileged programs or tasks.

When accessing memory-mapped I/O ports,
e the normal segmentation and paging protection also affect
access to |/O ports.

/O port protection (cont’d)

The 1/O permission bit map is a device for permitting limited access to
I/O ports by less privileged programs or tasks.

 If in protected mode and the CPL is less than or equal to the current IOPL,
the processor allows all I/O operations to proceed.

o If the CPL is greater than the IOPL, the processor checks the 1/0O

permission bit map to determine if access to a particular I/O port is
allowed.

The 1I/O permission bit map is located in the TSS for the currently running
task or program.

e Each bit in the map corresponds to an I/O port byte address.

k)|

2423

Task State Segment (TSS)

0

Last byte of

— 1 1111111

bit
map must be
followed by a

/O Permission Bit Map

I/O map h"‘, -

I/0 Map Base B4H
base must b 4
& &
not exceed

DFFFH.

Intel x86 Architecture

: Stack Manipulation

eeeeeeeeeeeeeeeeeeeee

Stack

The stack is a contiguous array of memory locations. It is .
contained in a segment and identified by the segment selector in
the SS register.

Items are placed on the stack using the PUSH instruction and
removed from the stack using the POP instruction.

e When an item is Eushed onto the stack, the processor decrements
the ESP register, then writes the item at the new top of stack.
When an item is popped off the stack, the processor reads the
item from the top of stack, then increments the ESP register.

The processor references the SS register automatically for all stack
operations. For example, when the ESP register is used as a
memory address, it automatically points to an address in the
current stack. Also, the CALL, RET, PUSH, POP ENTER, and LEAVE
instructions all perform operations on the current stack.

Stack (cont'd)

Stack Segment

Stack Frame |« Bottom of Stack
R . -——=L0itia ESP Value)

g Return Instruction S
I' | Pointer \
I | 1
! i
- Local Variables I

i [
: 'f:,orz)gggmg The Stack Can Be :
- 16 or 32 Bits Wide I
! | i
I I 1
! i
1
! Parameters "
I Passed to The EBP register is :
- Called typically set to point I
] Procedure to the return !
N | instruction pointer. P
~< < Erame Boundary ———— SRR TG ==~ =~ fE============= ——
eturn Tnstruction .
Pointer € EBP Register
- ESP Reqister
Top of Stack

Pushes Move the Pops Move the

Top Of Stack to Top Of Stack to

Lower Addresses Higher Addresses

February 19 CMSCAT2 Set 2

Stack-Frame Base Pointer

53

Procedure Call (CALL/RET)

When executing a call, the processor does the following
e Pushes the current value of the EIP register on the stack.
» Loads the offset of the called procedure in the EIP register.
e Begins execution of the called procedure.

When executing a near return, the processor performs these
actions:
e Pops the top-of-stack value (the return instruction pointer) into
the EIP register.

 If the RET instruction has an optional n argument, increments
the stack pointer by the number of bytes specified with the n
operand to release parameters from the stack.

e Resumes execution of the calling procedure.

Procedure Call (CALL/RET) (cont’d)

Stack
Frame A
Before
Call

Stack
Frame
After \
Call

February 19

Stack During
Near Call

Param 1

Param 2

Param 3

Calling EIP

CALL addr

-«<— ESP Before Call
-«<— ESP After Call

CMSC412 Set 2

Stack During

Near Return

<€—ESP After Return

Param 1

Param 2

Param 3

Calling EIP

-<—ESP Before Return

RET n

55

Interrupt and Exceptions

When an interrupt or exception is signaled, the processor halts
execution of the current program or task and switches to a
handler procedure that has been written specifically to handle the
interrupt or exception condition.

The processor accesses the handler procedure through an entry in
the interrupt descriptor table (IDT).

When the handler has completed handling the interrupt or

excepEon, program control is returned to the interrupted program
or task.

If the code segment for the handler procedure has the same
ﬁrivilege level as the currently executing program or task, the

andler procedure uses the current stack; if the handler executes
at a more privileged level, the processor switches to the stack for
the handler’s privilege level.

A return from an interrupt or exception handler is initiated with
the IRET instruction. The IRET instruction is similar to the far RET
instruction, except that it also restores the contents of the EFLAGS
register for the interrupted procedure.

Interrupt and Exceptions (cont’d)

If no stack switch occurs, the processor does the following when calling
an interrupt or exception handler

Pushes the current contents of the EFLAGS, CS, and EIP registers (in that
order) on the stack.

Pushes an error code (if appropriate) on the stack.

Loads the segment selector for the new code segment and the new
instruction pointer (from the interrupt gate or trap gate) into the CS and
EIP registers, respectively.

If the call is through an interrupt gate, clears the IF flag in the EFLAGS
register.

Begins execution of the handler procedure.

When executin? a return from an interrupt or exception handler from the
e

same privilege

vel as the interrupted procedure, the processor performs

these actions:

Restores the CS and EIP registers to their values prior to the interrupt or
exception.

Restores the EFLAGS register.
Increments the stack pointer appropriately.
Resumes execution of the interrupted procedure.

Interrupt and Exceptions (cont’d)

If a stack switch does occur, the processor does the following:

« Temporarily saves (internally) the current contents of the SS, ESP EFLAGS, CS, and EIP
registers.

» Loads the segment selector and stack pointer for the new stack (that is, the stack for
the privilege level being called) from the TSS into the SS and ESP registers and
switches to the new stack.

e Pushes the temporarily saved SS, ESP EFLAGS, CS, and EIP values for the interrupted
procedure’s stack onto the new stack.

e Pushes an error code on the new stack (if appropriate).

e Loads the segment selector for the new code segment and the new instruction
pointer (from the interrupt gate or trap gate) into the CS and EIP registers,
respectively.

 If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.
e Begins execution of the handler procedure at the new privilege level.

When executing a return from an interrupt or exception handler from a different
privilege level than the interrupted procedure, the processor performs these
actions:

e Performs a privilege check.
e Restores the CS and EIP registers to their values prior to the interrupt or exception.
e Restores the EFLAGS register.

Restores the SS and ESP registers to their values prior to the interrupt or exception,
resulting in a stack switch back to the stack of the interrupted procedure.

» “Resumes execution of the interrupted procedure.

Interrupt and Exceptions (cont’d)

Stack Usage with No
Privilege-Level Change

Interrupted Procedure’s
and Handler's Stack

-«— 5P Before

EELAGS Transfer to Handler
(Y
EIP

Error Code -.——ESP After
Transfer to Handler

Stack Usage with
Privilege-Level Change

Interrupted Procedure's Handler's Stack
Stack

<«—[(SP Before
Transfer to Handler SS

ESP
EFLAGS
CS

EIP

ESP After——= Error Code
Transfer to Handler

February 19 CMSC412 Set 2

