
CSMC 412
Operating Systems

Prof. Ashok K Agrawala

Set 6

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Synchronization Tools

Synchronization Tools

• Background

• The Critical-Section Problem

• Peterson’s Solution

• Synchronization Hardware

• Mutex Locks

• Semaphores

• Monitors

Copyright 2018 Silberschatz, Gavin & Gagne

Objectives

• To present the concept of process
synchronization.

• To introduce the critical-section problem,
whose solutions can be used to ensure the
consistency of shared data

• To present both software and hardware
solutions of the critical-section problem

• To examine several classical process-
synchronization problems

• To explore several tools that are used to
solve process synchronization problems

Copyright 2018 Silberschatz, Gavin & Gagne

Background

• Processes can execute concurrently
• May be interrupted at any time, partially completing execution

• Concurrent access to shared data may result in data
inconsistency

• Maintaining data consistency requires mechanisms to ensure
the orderly execution of cooperating processes

Copyright 2018 Silberschatz, Gavin & Gagne

Systems = Objects + Activities

• Safety is a property of objects, and groups of objects, that participate across multiple activities.

• Can be a concern at many different levels: objects, composites, components, subsystems,
hosts, …

• Liveness is a property of activities, and groups of activities, that span across multiple objects.

• Levels: Messages, call chains, threads, sessions, scenarios, scripts workflows, use cases,
transactions, data flows, mobile computations, …

Copyright 2018 Silberschatz, Gavin & Gagne

Violating Safety

• Data can be shared by threads

• Scheduler can interleave or overlap threads arbitrarily

• Can lead to interference
• Storage corruption (e.g. a data race/race condition)

• Violation of representation invariant

• Violation of a protocol (e.g. A occurs before B)

Copyright 2018 Silberschatz, Gavin & Gagne

How does this apply to OSs?

• Any resource that is shared could be accessed inappropriately
• Shared memory

• Kernel threads

• Processes (shared memory set up by kernel)

• Shared resources
• Printer, Video screen, Network card, …

• OS must protect shared resources
• And provide processes a means to protect their own abstractions

Copyright 2018 Silberschatz, Gavin & Gagne

Illustration of the problem:

• Suppose that we wanted to provide a solution to the consumer-
producer problem that fills all the buffers. We can do so by having an
integer counter that keeps track of the number of full buffers.
Initially, counter is set to 0. It is incremented by the producer after
it produces a new buffer and is decremented by the consumer after it
consumes a buffer.

Copyright 2018 Silberschatz, Gavin & Gagne

Producer

while (true) {

/* produce an item in next produced */

while (counter == BUFFER_SIZE) ;

/* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

Copyright 2018 Silberschatz, Gavin & Gagne

Consumer

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in next consumed */

}

Copyright 2018 Silberschatz, Gavin & Gagne

Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 0

Start: both threads ready to

run. Each will increment the

global count.

Shared state

Copyright 2018 Silberschatz, Gavin & Gagne

Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 0

T1 executes, grabbing

the global counter value into y.

Shared state

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne

Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 0

T1 is pre-empted. T2

executes, grabbing the global

counter value into y.

Shared state

y = 0

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne

Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 1

T2 executes, storing the

incremented cnt value.

Shared state

y = 0

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne

Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 1

T2 completes. T1

executes again, storing the

old counter value (1) rather

than the new one (2)!

Shared state

y = 0

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne

But When I Run it Again?

Copyright 2018 Silberschatz, Gavin & Gagne

Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 0

Start: both threads ready to

run. Each will increment the

global count.

Shared state

Copyright 2018 Silberschatz, Gavin & Gagne

Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 0

T1 executes, grabbing

the global counter value into y.

Shared state

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne

Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 1

T1 executes again, storing the

counter value

Shared state

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne

Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 1

T1 finishes. T2 executes,

grabbing the global

counter value into y.

Shared state

y = 0

y = 1

Copyright 2018 Silberschatz, Gavin & Gagne

Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 2

T2 executes, storing the

incremented cnt value.

Shared state

y = 0

y = 1

Copyright 2018 Silberschatz, Gavin & Gagne

What happened?

• In the first example, t1 was preempted after it read the counter but before it
stored the new value.

• Depends on the idea of an atomic action

• Violated an object invariant

• A particular way in which the execution of two threads is interleaved is called a
schedule. We want to prevent this undesirable schedule.

• Undesirable schedules can be hard to reproduce, and so hard to debug.

Copyright 2018 Silberschatz, Gavin & Gagne

Race Condition

• counter++ could be implemented as

register1 = counter

register1 = register1 + 1

counter = register1

• counter-- could be implemented as

register2 = counter

register2 = register2 - 1

counter = register2

• Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

Copyright 2018 Silberschatz, Gavin & Gagne

Question

• If you run a program with a race condition, will you always get an
unexpected result?
• No! It depends on the scheduler

• ...and on the other threads/processes/etc that are running on the same CPU

• Race conditions are hard to find

Copyright 2018 Silberschatz, Gavin & Gagne

Disabling Interrupts

• Doesn’t work for multiprocessors

• Doesn’t permit different groups of critical sections

Copyright 2018 Silberschatz, Gavin & Gagne

Synchronization

static int cnt = 0;

struct Mutex lock;

Mutex_Init(&lock);

void run() {

Mutex_Lock (&lock);

int y = cnt;

cnt = y + 1;

Mutex_Unlock (&lock);

}

Lock, for protecting

The shared state

Acquires the lock;

Only succeeds if not

held by another

thread

Releases the lock

Copyright 2018 Silberschatz, Gavin & Gagne

Java-style synchronized block

static int cnt = 0;

struct Mutex lock;

Mutex_Init(&lock);

void run() {

synchronized (lock) {

int y = cnt;

cnt = y + 1;

}

}

Lock, for protecting

The shared state

Acquires the lock;

Only succeeds if not

held by another

thread

Releases the lock

Copyright 2018 Silberschatz, Gavin & Gagne

Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 0Shared state

T1 acquires the lock

Copyright 2018 Silberschatz, Gavin & Gagne

Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 0Shared state

T1 reads cnt into y

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne

Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 0Shared state

T1 is pre-empted.

T2 attempts to

acquire the lock but fails

because it’s held by

T1, so it blocks

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne

Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 1Shared state

T1 runs, assigning

to cnt

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne

Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 1Shared state

T1 releases the lock

and terminates

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne

Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 1Shared state

T2 now can acquire

the lock.

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne

Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 1Shared state

T2 reads cnt into y.

y = 0

y = 1

Copyright 2018 Silberschatz, Gavin & Gagne

Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 2Shared state

T2 assigns cnt,

then releases the lock

y = 0

y = 1

Copyright 2018 Silberschatz, Gavin & Gagne

Mutexes (locks)

• Only one thread can “acquire” a mutex

• Other threads block until they can acquire it

• Used for implementing critical sections

• A critical section is a piece of code that should not be interleaved with code from another
thread

• Executed atomically

• We’ll look at other ways to implement critical sections later …

Copyright 2018 Silberschatz, Gavin & Gagne

Mutex Policies

• What if a thread already holds the mutex it’s trying to acquire?

• Re-entrant mutexes: The thread can reacquire the same lock many times. Lock is released
when object unlocked the corresponding number of times

• This is the case for Java

• Non-reentrant: Deadlock! (defined soon.)

• This is the case in GeekOS

• What happens if a thread is killed while holding a mutex? Or if it just forgets to release it

• Could lead to deadlock

Copyright 2018 Silberschatz, Gavin & Gagne

Java Synchronized statement

• synchronized (obj) { statements }

• Obtains the lock on obj before executing statements in block
• obj can be any Object

• Releases the lock when the statement block completes
• Either normally, or due to a return, break, or exception being thrown in the

block

• Can’t forget to release the lock!

Copyright 2018 Silberschatz, Gavin & Gagne

Synchronization not a Panacea

• Two threads can block on locks held by the
other; this is called deadlock

Object A = new Object();

Object B = new Object();

T1.run() {

synchronized (A) {

synchronized (B) {

…

}

}

}

T2.run() {

synchronized (B) {

synchronized (A) {

…

}

}

}

Copyright 2018 Silberschatz, Gavin & Gagne

Deadlock

• Quite possible to create code that deadlocks

• Thread 1 holds lock on A

• Thread 2 holds lock on B

• Thread 1 is trying to acquire a lock on B

• Thread 2 is trying to acquire a lock on A

• Deadlock!

• Not easy to detect when deadlock has occurred

• other than by the fact that nothing is happening

Copyright 2018 Silberschatz, Gavin & Gagne

Deadlock: Wait graphs

A T1 Thread T1 holds lock A

BT2
Thread T2 attempting to

acquire lock B

Deadlock occurs when there is a cycle in the graph

Copyright 2018 Silberschatz, Gavin & Gagne

Wait graph example

A T1

BT2

T1 holds lock on A

T2 holds lock on B

T1 is trying to acquire a lock on B

T2 is trying to acquire a lock on A

Copyright 2018 Silberschatz, Gavin & Gagne

Critical Section Problem

• Consider system of n processes {p0, p1, … pn-1}

• Each process has critical section segment of code
• Process may be changing common variables, updating

table, writing file, etc

• When one process in critical section, no other may be in
its critical section

• Critical section problem is to design protocol to
solve this

• Each process must ask permission to enter critical
section in entry section, may follow critical section
with exit section, then remainder section

Copyright 2018 Silberschatz, Gavin & Gagne

Critical Section

• General structure of process Pi

Copyright 2018 Silberschatz, Gavin & Gagne

Solution to Critical-Section Problem

1.Mutual Exclusion - If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections

2.Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter
the critical section next cannot be postponed indefinitely

3.Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its
critical section and before that request is granted
 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the N processes

Copyright 2018 Silberschatz, Gavin & Gagne

Two-task Solution

• Two tasks, T0 and T1 (Ti and Tj)

• Three solutions presented.

Copyright 2018 Silberschatz, Gavin & Gagne

Algorithm 1

• Threads share a common integer variable turn
• Turn takes values 0 and 1

• Initialize turn to 0

• Entry Section for thread i
• If turn==i, thread i is allowed to proceed, else yield

• Exit Section for thread I
• turn== (1-i)

Copyright 2018 Silberschatz, Gavin & Gagne

Algorithm 1

• Satisfies mutual exclusion but not progress.

• Processes are forced to enter their critical sections alternately.

• One process not in its critical section thus prevents the other from entering its
critical section.

Copyright 2018 Silberschatz, Gavin & Gagne

Algorithm 2

• Boolean flags to indicate thread’s
interest in entering critical section

• Entry Code
if (t == 0) {

flag0 = true;
while(flag1 == true)

Thread.yield();
}
else {

flag1 = true;
while (flag0 == true)

Thread.yield();

• Exit Code
if (t == 0)

flag0 = false;

else

flag1 = false;

• Initialize
• Both flags to false

Copyright 2018 Silberschatz, Gavin & Gagne

Algorithm 2

• Satisfies mutual exclusion, but not progress requirement.

• Both processes can end up setting their flag[] variable to true, and thus
neither process enters its critical section!

Copyright 2018 Silberschatz, Gavin & Gagne

Algorithm 3 Peterson’s Solution

• Combine ideas from 1 and 2

Copyright 2018 Silberschatz, Gavin & Gagne

Peterson’s Solution

• Good algorithmic description of solving the problem

• Two process solution

• Assume that the load and store machine-language
instructions are atomic; that is, cannot be interrupted

• The two processes share two variables:
• int turn;

• Boolean flag[2]

• The variable turn indicates whose turn it is to enter
the critical section

• The flag array is used to indicate if a process is ready
to enter the critical section. flag[i] = true implies
that process Pi is ready!

Copyright 2018 Silberschatz, Gavin & Gagne

Algorithm for Process Pi

do {

flag[i] = true;

turn = j;

while (flag[j] && turn = = j);

critical section

flag[i] = false;

remainder section

} while (true);

Copyright 2018 Silberschatz, Gavin & Gagne

Peterson’s Solution (Cont.)

• Provable that the three CS requirement are met:

1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

Copyright 2018 Silberschatz, Gavin & Gagne

Algorithm 3

• Meets all three requirements; solves the critical-section problem for two
processes.

• One process is always guaranteed to get into its critical section.

• Processes are forced to take turns when they both want to get in.

Copyright 2018 Silberschatz, Gavin & Gagne

Bakery Algorithm

• Before entering its critical section, process
receives a number. Holder of the smallest
number enters the critical section.

• If processes Pi and Pj receive the same
number, if i < j, then Pi is served first; else Pj

is served first.

• The numbering scheme always generates
numbers in increasing order of
enumeration; i.e., 1,2,3,3,3,3,4,5...

Critical section for n processes

Copyright 2018 Silberschatz, Gavin & Gagne

Bakery Algorithm

• Notation < lexicographical order (ticket #, process id #)
• (a,b) < c,d) if a < c or if a = c and b < d

• max (a0,…, an-1) is a number, k, such that k  ai for i - 0,
…, n – 1

• Shared data

boolean choosing[n];

int number[n];

Data structures are initialized to false and 0 respectively

Copyright 2018 Silberschatz, Gavin & Gagne

Bakery Algorithm

do {
choosing[i] = true;
number[i] = max(number[0], number[1], …, number [n – 1])+1;
choosing[i] = false;
for (j = 0; j < n; j++) {

while (choosing[j]) ;
while ((number[j] != 0) && (number[j,j] < number[i,i])) ;

}
critical section

number[i] = 0;
remainder section

} while (1);

Copyright 2018 Silberschatz, Gavin & Gagne

Critical-Section Handling in OS

Two approaches depending on if kernel is
preemptive or non- preemptive
• Preemptive – allows preemption of process

when running in kernel mode

• Non-preemptive – runs until exits kernel mode,
blocks, or voluntarily yields CPU
• Essentially free of race conditions in kernel mode

Copyright 2018 Silberschatz, Gavin & Gagne

Synchronization Hardware

• Many systems provide hardware support for
implementing the critical section code.

• All solutions below based on idea of locking
• Protecting critical regions via locks

• Uniprocessors – could disable interrupts
• Currently running code would execute without preemption
• Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• Modern machines provide special atomic hardware
instructions

• Atomic = non-interruptible

• Either test memory word and set value
• Or swap contents of two memory words

Copyright 2018 Silberschatz, Gavin & Gagne

Solution to Critical-section Problem Using Locks

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

Copyright 2018 Silberschatz, Gavin & Gagne

test_and_set Instruction

Definition:

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1.Executed atomically

2.Returns the original value of passed parameter

3.Set the new value of passed parameter to “TRUE”.

Copyright 2018 Silberschatz, Gavin & Gagne

Solution using test_and_set()

Shared Boolean variable lock, initialized to FALSE

Solution:

do {
while (test_and_set(&lock))

; /* do nothing */

/* critical section */

lock = false;

/* remainder section */

} while (true);

Copyright 2018 Silberschatz, Gavin & Gagne

compare_and_swap Instruction

Definition:
int compare _and_swap(int *value, int expected, int new_value) {

int temp = *value;

if (*value == expected)

*value = new_value;

return temp;

}

1.Executed atomically
2.Returns the original value of passed parameter “value”
3.Set the variable “value” the value of the passed

parameter “new_value” but only if “value”
==“expected”. That is, the swap takes place only under
this condition.

Copyright 2018 Silberschatz, Gavin & Gagne

Solution using compare_and_swap

• Shared integer “lock” initialized to 0;

• Solution:

do {

while (compare_and_swap(&lock, 0, 1) != 0)

; /* do nothing */

/* critical section */

lock = 0;

/* remainder section */

} while (true);

Copyright 2018 Silberschatz, Gavin & Gagne

Bounded-waiting Mutual Exclusion with test_and_set

do {
waiting[i] = true;
key = true;
while (waiting[i] && key)

key = test_and_set(&lock);

waiting[i] = false;

/* critical section */

j = (i + 1) % n;

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = false;

else

waiting[j] = false;

/* remainder section */

} while (true);

Copyright 2018 Silberschatz, Gavin & Gagne

Mutex Locks

• Previous solutions are complicated and generally
inaccessible to application programmers

• OS designers build software tools to solve critical
section problem

• Simplest is mutex lock

• Protect a critical section by first acquire() a lock
then release() the lock
• Boolean variable indicating if lock is available or not

• Calls to acquire() and release() must be atomic
• Usually implemented via hardware atomic instructions

• But this solution requires busy waiting
• This lock therefore called a spinlock

Copyright 2018 Silberschatz, Gavin & Gagne

acquire() and release()

• acquire() {
while (!available)

; /* busy wait */

available = false;;

}

• release() {

available = true;

}

• do {

acquire lock

critical section

release lock

remainder section

} while (true);

Copyright 2018 Silberschatz, Gavin & Gagne

Semaphore

• Synchronization tool that provides more sophisticated ways (than Mutex locks)
for process to synchronize their activities.

• Semaphore S – integer variable

• Can only be accessed via two indivisible (atomic) operations

• wait() and signal()
• Originally called P() and V()

• Definition of the wait() operation
wait(S) {

while (S <= 0)

; // busy wait

S--;

}

• Definition of the signal() operation
signal(S) {

S++;

}

Copyright 2018 Silberschatz, Gavin & Gagne

Information Implications of Semaphore

• A process has synch points

• To go past a synch point certain conditions must be true

• Conditions depend not only on ME but other processes also

• Have to confirm that the conditions are true before proceeding, else have to wait.

• P(S) – Wait (S)

• If can complete this operation

• Inform others through changed value of S

• Proceed past the synch point

• If can not complete

• Wait for the event when S becomes >0

• V(S) – Signal (S)

• Inform others that I have gone past a synch point.

Copyright 2018 Silberschatz, Gavin & Gagne

Semaphore Usage

• Counting semaphore – integer value can range over an unrestricted
domain

• Binary semaphore – integer value can range only between 0 and 1
• Same as a mutex lock

• Can solve various synchronization problems

• Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0
P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

• Can implement a counting semaphore S as a binary semaphore

Copyright 2018 Silberschatz, Gavin & Gagne

Semaphore as General Synchronization Tool

• Counting semaphore – integer value can range over an unrestricted domain

• Binary semaphore – integer value can range only between 0
and 1; can be simpler to implement
• Also known as mutex locks

• Can implement a counting semaphore S as a binary semaphore

• Provides mutual exclusion

Semaphore S; // initialized to 1

P(S);
criticalSection();
V(S);

Copyright 2018 Silberschatz, Gavin & Gagne

Implementing S as a Binary Semaphore

• Data structures:

binary-semaphore S1, S2;

int C:

• Initialization:

S1 = 1

S2 = 0

C = initial value of semaphore S

Copyright 2018 Silberschatz, Gavin & Gagne

Implementing S
• wait operation

wait(S1);
C--;
if (C < 0) {

signal(S1);
wait(S2);

}
signal(S1);

• signal operation
wait(S1);
C ++;
if (C <= 0)

signal(S2);
else

signal(S1);

Copyright 2018 Silberschatz, Gavin & Gagne

Semaphore Implementation

• Must guarantee that no two processes can execute the
wait() and signal() on the same semaphore at the same
time

• Thus, the implementation becomes the critical section
problem where the wait and signal code are placed in the
critical section
• Could now have busy waiting in critical section

implementation
• But implementation code is short

• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in critical
sections and therefore this is not a good solution

Copyright 2018 Silberschatz, Gavin & Gagne

Semaphore Implementation with no Busy waiting

• With each semaphore there is an associated waiting queue

• Each entry in a waiting queue has two data items:
• value (of type integer)

• pointer to next record in the list

• Two operations:
• block – place the process invoking the operation on the appropriate waiting

queue

• wakeup – remove one of processes in the waiting queue and place it in the
ready queue

• typedef struct{

int value;

struct process *list;

} semaphore;

Copyright 2018 Silberschatz, Gavin & Gagne

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process to S->list;

block();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from S->list;

wakeup(P);

}

}

Copyright 2018 Silberschatz, Gavin & Gagne

Deadlock and Starvation

• Deadlock – two or more processes are waiting indefinitely for
an event that can be caused by only one of the waiting
processes

• Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

• Starvation – indefinite blocking
• A process may never be removed from the semaphore queue in which it is suspended

• Priority Inversion – Scheduling problem when lower-priority
process holds a lock needed by higher-priority process

• Solved via priority-inheritance protocol

Copyright 2018 Silberschatz, Gavin & Gagne

Problems with Semaphores

• Incorrect use of semaphore operations:

• signal (mutex) …. wait (mutex)

• wait (mutex) … wait (mutex)

• Omitting of wait (mutex) or signal (mutex) (or
both)

• Deadlock and starvation are possible.

Copyright 2018 Silberschatz, Gavin & Gagne

Monitors
• A high-level abstraction that provides a convenient and effective mechanism

for process synchronization

• Abstract data type, internal variables only accessible by code within the
procedure

• Only one process may be active within the monitor at a time

• But not powerful enough to model some synchronization schemes

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }

}

}
Copyright 2018 Silberschatz, Gavin & Gagne

Schematic view of a Monitor

Copyright 2018 Silberschatz, Gavin & Gagne

Condition Variables

• condition x, y;

• Two operations are allowed on a condition
variable:
• x.wait() – a process that invokes the operation is

suspended until x.signal()

• x.signal() – resumes one of processes (if any) that
invoked x.wait()

• If no x.wait() on the variable, then it has no effect on
the variable

Copyright 2018 Silberschatz, Gavin & Gagne

Monitor with Condition Variables

Copyright 2018 Silberschatz, Gavin & Gagne

Condition Variables Choices

• If process P invokes x.signal(),and process Q is suspended in x.wait(), what
should happen next?
• Both Q and P cannot execute in parallel. If Q is resumed, then P must wait

• Options include
• Signal and wait – P waits until Q either leaves the monitor or it waits for another

condition

• Signal and continue – Q waits until P either leaves the monitor or it waits for
another condition

• Both have pros and cons – language implementer can decide

• Monitors implemented in Concurrent Pascal compromise
• P executing signal immediately leaves the monitor, Q is resumed

• Implemented in other languages including Mesa, C#, Java

Copyright 2018 Silberschatz, Gavin & Gagne

Monitor Implementation Using Semaphores

• Variables

semaphore mutex; // (initially = 1)

semaphore next; // (initially = 0)

int next_count = 0;

• Each procedure F will be replaced by

wait(mutex);

…

body of F;

…

if (next_count > 0)

signal(next)

else

signal(mutex);

• Mutual exclusion within a monitor is ensured
Copyright 2018 Silberschatz, Gavin & Gagne

Monitor Implementation – Condition Variables

• For each condition variable x, we have:

semaphore x_sem; // (initially =
0)

int x_count = 0;

• The operation x.wait can be implemented as:

x_count++;
if (next_count > 0)

signal(next);
else

signal(mutex);
wait(x_sem);
x_count--;

Copyright 2018 Silberschatz, Gavin & Gagne

Monitor Implementation (Cont.)

• The operation x.signal can be implemented as:

if (x_count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}

Copyright 2018 Silberschatz, Gavin & Gagne

Resuming Processes within a Monitor

• If several processes queued on condition x, and
x.signal() executed, which should be resumed?

• FCFS frequently not adequate

• conditional-wait construct of the form x.wait(c)
• Where c is priority number

• Process with lowest number (highest priority) is scheduled
next

Copyright 2018 Silberschatz, Gavin & Gagne

• Allocate a single resource among competing processes using priority
numbers that specify the maximum time a process plans to use the
resource

R.acquire(t);

...

access the resurce;

...

R.release;

• Where R is an instance of type ResourceAllocator

Single Resource allocation

Copyright 2018 Silberschatz, Gavin & Gagne

A Monitor to Allocate Single Resource

monitor ResourceAllocator

{

boolean busy;

condition x;

void acquire(int time) {

if (busy)

x.wait(time);

busy = TRUE;

}

void release() {

busy = FALSE;

x.signal();

}

initialization code() {

busy = FALSE;

}

}
Copyright 2018 Silberschatz, Gavin & Gagne

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 6

