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Semaphore

• Invented by Edsger Dijkstra in 1962
• When working on and operating system for Electrologica X which became 

THE.

• A non-negative integer (S) variable on which two operations are 
allowed
• P(S)  ----- Wait(S)

• Decrement S
• Wait until this operation can be carried out.

• V(S)  ------Signal(S)
• Increment S

• Both operations are considered Atomic
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Semaphore

• Synchronization tool that provides more sophisticated ways (than Mutex locks)  
for process to synchronize their activities.

• Semaphore S – integer variable

• Can only be accessed via two indivisible (atomic) operations

• wait() and signal()
• Originally called P() and V()

• Definition of  the wait() operation
wait(S) { 

while (S <= 0)

; // busy wait

S--;

}

• Definition of  the signal() operation
signal(S) { 

S++;

}
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Information Implications of Semaphore
• A process has synch points 

• To go past a synch point certain conditions must be true

• Conditions depend not only on ME but other processes also

• Have to confirm that the conditions are true before proceeding, else have to wait.

• P(S) – Wait (S)

• If can complete this operation

• Inform others through changed value of S

• Proceed past the synch point

• If can not complete

• Wait for the event when S becomes >0

• V(S) – Signal (S)

• Inform others that I have gone past a synch point.
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Semaphore Usage

• Counting semaphore – integer value can range over an unrestricted 
domain

• Binary semaphore – integer value can range only between 0 and 1
• Same as a mutex lock

• Can solve various synchronization problems

• Consider P1 and P2 that require S1 to happen before S2
Create a semaphore “synch” initialized to 0 
P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

• Can implement a counting semaphore S as a binary semaphore
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Semaphore as General Synchronization Tool

• Counting semaphore – integer value can range over an unrestricted domain

• Binary semaphore – integer value can range only between 0 
and 1; can be simpler to implement
• Also known as mutex locks

• Can implement a counting semaphore S as a binary semaphore

• Provides mutual exclusion

Semaphore S; // initialized to 1

P(S);
criticalSection();
V(S);
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Implementing S as a Binary Semaphore

• Data structures:

binary-semaphore S1, S2;

int C:  

• Initialization:

S1 = 1

S2 = 0

C = initial value of semaphore S
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Implementing S
• wait operation

wait(S1);
C--;
if (C < 0) {

signal(S1);
wait(S2);

}
signal(S1);

• signal operation
wait(S1);
C ++;
if (C <= 0)

signal(S2);
else

signal(S1);
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Semaphore Implementation

• Must guarantee that no two processes can execute  the 
wait() and signal() on the same semaphore at the same 
time

• Thus, the implementation becomes the critical section 
problem where the wait and signal code are placed in the 
critical section
• Could now have busy waiting in critical section 

implementation
• But implementation code is short

• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in critical 
sections and therefore this is not a good solution
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Semaphore Implementation with no Busy waiting 

• With each semaphore there is an associated waiting queue

• Each entry in a waiting queue has two data items:
• value (of type integer)

• pointer to next record in the list

• Two operations:
• block – place the process invoking the operation on the appropriate waiting 

queue

• wakeup – remove one of processes in the waiting queue and place it in the 
ready queue

• typedef struct{ 

int value; 

struct process *list; 

} semaphore; 
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Implementation with no Busy waiting (Cont.)

wait(semaphore *S) { 

S->value--; 

if (S->value < 0) {

add this process to S->list; 

block(); 

} 

}

signal(semaphore *S) { 

S->value++; 

if (S->value <= 0) {

remove a process P from S->list; 

wakeup(P); 

} 

} 
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Deadlock and Starvation

• Deadlock – two or more processes are waiting indefinitely for 
an event that can be caused by only one of the waiting 
processes

• Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S);                 signal(Q);

signal(Q);                 signal(S);

• Starvation – indefinite blocking  
• A process may never be removed from the semaphore queue in which it is suspended

• Priority Inversion – Scheduling problem when lower-priority 
process holds a lock needed by higher-priority process

• Solved via priority-inheritance protocol
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Problems with Semaphores

• Incorrect use of semaphore operations:

• signal (mutex)  ….  wait (mutex)

• wait (mutex)  …  wait (mutex)

• Omitting  of wait (mutex) or signal (mutex) (or 
both)

• Deadlock and starvation are possible.
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Monitors
• A high-level abstraction that provides a convenient and effective mechanism 

for process synchronization

• Abstract data type, internal variables only accessible by code within the 
procedure

• Only one process may be active within the monitor at a time

• But not powerful enough to model some synchronization schemes

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }

}

}
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Schematic view of a Monitor
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Condition Variables

• condition x, y;

• Two operations are allowed on a condition 
variable:
• x.wait() – a process that invokes the operation is 

suspended until x.signal() 

• x.signal() – resumes one of processes (if any) that
invoked x.wait()

• If no x.wait() on the variable, then it has no effect on 
the variable
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Monitor with Condition Variables
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Condition Variables Choices

• If process P invokes x.signal(),and process Q is suspended in x.wait(), what 
should happen next?
• Both Q and P cannot execute in parallel. If Q is resumed, then P must wait

• Options include
• Signal and wait – P waits until Q either leaves the monitor or it waits for another 

condition

• Signal and continue – Q waits until P either leaves the monitor or it  waits for 
another condition

• Both have pros and cons – language implementer can decide

• Monitors implemented in Concurrent Pascal compromise
• P executing signal immediately leaves the monitor, Q is resumed

• Implemented in other languages including Mesa, C#, Java
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Monitor Implementation Using Semaphores

• Variables 

semaphore mutex;  // (initially  = 1)

semaphore next;   // (initially  = 0)

int next_count = 0;

• Each procedure F will be replaced by

wait(mutex);

…

body of F;

…

if (next_count > 0)

signal(next)

else 

signal(mutex);

• Mutual exclusion within a monitor is ensured
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Monitor Implementation – Condition Variables

• For each condition variable x, we  have:

semaphore x_sem; // (initially  = 
0)

int x_count = 0;

• The operation x.wait can be implemented as:

x_count++;
if (next_count > 0)

signal(next);
else

signal(mutex);
wait(x_sem);
x_count--;
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Monitor Implementation (Cont.)

• The operation x.signal can be implemented as:

if (x_count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}
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Resuming Processes within a Monitor

• If several processes queued on condition x, and 
x.signal() executed, which should be resumed?

• FCFS frequently not adequate 

• conditional-wait construct of the form x.wait(c)
• Where c is priority number

• Process with lowest number (highest priority) is scheduled 
next
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• Allocate a single resource among competing processes using priority 
numbers that specify the maximum time a process  plans to use the 
resource

R.acquire(t);

...

access the resurce;

...

R.release;

• Where R is an instance of  type ResourceAllocator

Single Resource allocation 
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A Monitor to Allocate Single Resource

monitor ResourceAllocator

{ 

boolean busy; 

condition x; 

void acquire(int time) { 

if (busy) 

x.wait(time); 

busy = TRUE; 

} 

void release() { 

busy = FALSE; 

x.signal(); 

} 

initialization code() {

busy = FALSE; 

}

}
Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 24



Synchronization Examples

• Classic Problems of Synchronization

• Synchronization within the Kernel

• POSIX Synchronization

• Synchronization in Java 

• Alternative Approaches
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Classical Problems of Synchronization

• Classical problems used to test newly-proposed 
synchronization schemes
• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem
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Bounded-Buffer Problem

• n buffers, each can hold one item

• Semaphore mutex initialized to the value 1

• Semaphore full initialized to the value 0

• Semaphore empty initialized to the value n
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Bounded Buffer Problem (Cont.)

• The structure of the producer process

do { 

...

/* produce an item in next_produced */ 

... 

wait(empty); 

wait(mutex); 

...

/* add next produced to the buffer */ 

... 

signal(mutex); 

signal(full); 

} while (true);
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Bounded Buffer Problem (Cont.)

• The structure of the consumer process

Do { 

wait(full); 

wait(mutex); 

...

/* remove an item from buffer to next_consumed */ 

... 

signal(mutex); 

signal(empty); 

...

/* consume the item in next consumed */ 

...

} while (true); 

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 29



Readers-Writers Problem

• A data set is shared among a number of concurrent processes
• Readers – only read the data set; they do not perform any updates
• Writers   – can both read and write

• Problem – allow multiple readers to read at the same time
• Only one single writer can access the shared data at the same time

• Several variations of how readers and writers are considered  – all 
involve some form of priorities

• Shared Data
• Data set
• Semaphore rw_mutex initialized to 1
• Semaphore mutex initialized to 1
• Integer read_count initialized to 0
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Readers-Writers Problem (Cont.)

• The structure of a writer process

do {

wait(rw_mutex); 

...

/* writing is performed */ 

... 

signal(rw_mutex); 

} while (true);
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Readers-Writers Problem (Cont.)

• The structure of a reader process
do {

wait(mutex);

read_count++;

if (read_count == 1) 

wait(rw_mutex); 

signal(mutex); 

...

/* reading is performed */ 

... 

wait(mutex);

read count--;

if (read_count == 0) 

signal(rw_mutex); 

signal(mutex); 

} while (true);
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Readers-Writers Problem Variations

• First variation – no reader kept waiting unless writer has 
permission to use shared object

• Second variation – once writer is ready, it performs the write ASAP

• Both may have starvation leading to even more variations

• Problem is solved on some systems by kernel providing reader-
writer locks
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Dining-Philosophers Problem

• Philosophers spend their lives alternating thinking and eating

• Don’t interact with their neighbors, occasionally try to pick up 2 chopsticks (one at a time) to eat 
from bowl

• Need both to eat, then release both when done

• In the case of 5 philosophers

• Shared data 

• Bowl of rice (data set)

• Semaphore chopstick [5] initialized to 1
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Dining-Philosophers Problem Algorithm

• The structure of Philosopher i:
do { 

wait (chopstick[i] );

wait (chopStick[ (i + 1) % 5] );

//  eat

signal (chopstick[i] );

signal (chopstick[ (i + 1) % 5] );

//  think

} while (TRUE);

• What is the problem with this algorithm?
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Monitor Solution to Dining Philosophers

monitor DiningPhilosophers

{ 

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) { 

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self[i].wait;

}

void putdown (int i) { 

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}
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Solution to Dining Philosophers (Cont.)

void test (int i) { 

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING) ) { 

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() { 

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}
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• Each philosopher i invokes the operations pickup() and putdown() in 
the following sequence:

DiningPhilosophers.pickup(i);

EAT

DiningPhilosophers.putdown(i);

• No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)
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A Monitor to Allocate Single Resource
monitor ResourceAllocator

{ 

boolean busy; 

condition x; 

void acquire(int time) { 

if (busy) 

x.wait(time); 

busy = TRUE; 

} 

void release() { 

busy = FALSE; 

x.signal(); 

} 

initialization code() {

busy = FALSE; 

}

}
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Synchronization Examples

• Solaris

• Windows

• Linux

• Pthreads
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Solaris Synchronization

• Implements a variety of locks to support multitasking, multithreading 
(including real-time threads), and multiprocessing

• Uses adaptive mutexes for efficiency when protecting data from short code 
segments

• Starts as a standard semaphore spin-lock
• If lock held, and by a thread running on another CPU, spins
• If lock held by non-run-state thread, block and sleep waiting for signal of lock being released

• Uses condition variables
• Uses readers-writers locks when longer sections of code need access to 

data
• Uses turnstiles to order the list of threads waiting to acquire either an 

adaptive mutex or reader-writer lock
• Turnstiles are per-lock-holding-thread, not per-object

• Priority-inheritance per-turnstile gives the running thread the highest of 
the priorities of the threads in its turnstile
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Windows Synchronization

• Uses interrupt masks to protect access to global resources on 
uniprocessor systems

• Uses spinlocks on multiprocessor systems
• Spinlocking-thread will never be preempted

• Also provides dispatcher objects user-land which may act 
mutexes, semaphores, events, and timers
• Events

• An event acts much like a condition variable

• Timers notify one or more thread when time expired

• Dispatcher objects either signaled-state (object available) or non-
signaled state (thread will block)
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Linux Synchronization

• Linux:
• Prior to kernel Version 2.6, disables interrupts to implement short 

critical sections
• Version 2.6 and later, fully preemptive

• Linux provides:
• Semaphores
• atomic integers
• spinlocks
• reader-writer versions of both

• On single-cpu system, spinlocks replaced by enabling and 
disabling kernel preemption
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Pthreads Synchronization

• Pthreads API is OS-independent

• It provides:
• mutex locks

• condition variable

• Non-portable extensions include:
• read-write locks

• spinlocks



Alternative Approaches

• Transactional Memory

• OpenMP

• Functional Programming Languages



• A memory transaction is a sequence of read-
write operations to memory that are 
performed atomically.

void update()

{

/* read/write memory */

}

Transactional Memory
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• OpenMP is a set of compiler directives and API 
that support parallel progamming.

void update(int value)

{

#pragma omp critical

{

count += value

}

}

The code contained within the #pragma omp 
critical directive is treated as a critical 
section and performed atomically.

OpenMP
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• Functional programming languages offer a 
different paradigm than procedural languages 
in that they do not maintain state. 

• Variables are treated as immutable and 
cannot change state once they have been 
assigned a value.

• There is increasing interest in functional 
languages such as Erlang and Scala for their 
approach in handling data races.

Functional Programming Languages
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