
CSMC 412
Operating Systems

Prof. Ashok K Agrawala

Set 7

Feb 2019 1

Semaphore

• Invented by Edsger Dijkstra in 1962
• When working on and operating system for Electrologica X which became

THE.

• A non-negative integer (S) variable on which two operations are
allowed
• P(S) ----- Wait(S)

• Decrement S
• Wait until this operation can be carried out.

• V(S) ------Signal(S)
• Increment S

• Both operations are considered Atomic

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 2

Semaphore

• Synchronization tool that provides more sophisticated ways (than Mutex locks)
for process to synchronize their activities.

• Semaphore S – integer variable

• Can only be accessed via two indivisible (atomic) operations

• wait() and signal()
• Originally called P() and V()

• Definition of the wait() operation
wait(S) {

while (S <= 0)

; // busy wait

S--;

}

• Definition of the signal() operation
signal(S) {

S++;

}

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 3

Information Implications of Semaphore
• A process has synch points

• To go past a synch point certain conditions must be true

• Conditions depend not only on ME but other processes also

• Have to confirm that the conditions are true before proceeding, else have to wait.

• P(S) – Wait (S)

• If can complete this operation

• Inform others through changed value of S

• Proceed past the synch point

• If can not complete

• Wait for the event when S becomes >0

• V(S) – Signal (S)

• Inform others that I have gone past a synch point.

Feb 2019 4Copyright 2018 Silberschatz, Gavin & Gagne

Semaphore Usage

• Counting semaphore – integer value can range over an unrestricted
domain

• Binary semaphore – integer value can range only between 0 and 1
• Same as a mutex lock

• Can solve various synchronization problems

• Consider P1 and P2 that require S1 to happen before S2
Create a semaphore “synch” initialized to 0
P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

• Can implement a counting semaphore S as a binary semaphore

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 5

Semaphore as General Synchronization Tool

• Counting semaphore – integer value can range over an unrestricted domain

• Binary semaphore – integer value can range only between 0
and 1; can be simpler to implement
• Also known as mutex locks

• Can implement a counting semaphore S as a binary semaphore

• Provides mutual exclusion

Semaphore S; // initialized to 1

P(S);
criticalSection();
V(S);

Feb 2019 6Copyright 2018 Silberschatz, Gavin & Gagne

Implementing S as a Binary Semaphore

• Data structures:

binary-semaphore S1, S2;

int C:

• Initialization:

S1 = 1

S2 = 0

C = initial value of semaphore S

Feb 2019 7Copyright 2018 Silberschatz, Gavin & Gagne

Implementing S
• wait operation

wait(S1);
C--;
if (C < 0) {

signal(S1);
wait(S2);

}
signal(S1);

• signal operation
wait(S1);
C ++;
if (C <= 0)

signal(S2);
else

signal(S1);

Feb 2019 8Copyright 2018 Silberschatz, Gavin & Gagne

Semaphore Implementation

• Must guarantee that no two processes can execute the
wait() and signal() on the same semaphore at the same
time

• Thus, the implementation becomes the critical section
problem where the wait and signal code are placed in the
critical section
• Could now have busy waiting in critical section

implementation
• But implementation code is short

• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in critical
sections and therefore this is not a good solution

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 9

Semaphore Implementation with no Busy waiting

• With each semaphore there is an associated waiting queue

• Each entry in a waiting queue has two data items:
• value (of type integer)

• pointer to next record in the list

• Two operations:
• block – place the process invoking the operation on the appropriate waiting

queue

• wakeup – remove one of processes in the waiting queue and place it in the
ready queue

• typedef struct{

int value;

struct process *list;

} semaphore;

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 10

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process to S->list;

block();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from S->list;

wakeup(P);

}

}

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 11

Deadlock and Starvation

• Deadlock – two or more processes are waiting indefinitely for
an event that can be caused by only one of the waiting
processes

• Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

• Starvation – indefinite blocking
• A process may never be removed from the semaphore queue in which it is suspended

• Priority Inversion – Scheduling problem when lower-priority
process holds a lock needed by higher-priority process

• Solved via priority-inheritance protocol

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 12

Problems with Semaphores

• Incorrect use of semaphore operations:

• signal (mutex) …. wait (mutex)

• wait (mutex) … wait (mutex)

• Omitting of wait (mutex) or signal (mutex) (or
both)

• Deadlock and starvation are possible.

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 13

Monitors
• A high-level abstraction that provides a convenient and effective mechanism

for process synchronization

• Abstract data type, internal variables only accessible by code within the
procedure

• Only one process may be active within the monitor at a time

• But not powerful enough to model some synchronization schemes

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }

}

}
Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 14

Schematic view of a Monitor

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 15

Condition Variables

• condition x, y;

• Two operations are allowed on a condition
variable:
• x.wait() – a process that invokes the operation is

suspended until x.signal()

• x.signal() – resumes one of processes (if any) that
invoked x.wait()

• If no x.wait() on the variable, then it has no effect on
the variable

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 16

Monitor with Condition Variables

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 17

Condition Variables Choices

• If process P invokes x.signal(),and process Q is suspended in x.wait(), what
should happen next?
• Both Q and P cannot execute in parallel. If Q is resumed, then P must wait

• Options include
• Signal and wait – P waits until Q either leaves the monitor or it waits for another

condition

• Signal and continue – Q waits until P either leaves the monitor or it waits for
another condition

• Both have pros and cons – language implementer can decide

• Monitors implemented in Concurrent Pascal compromise
• P executing signal immediately leaves the monitor, Q is resumed

• Implemented in other languages including Mesa, C#, Java

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 18

Monitor Implementation Using Semaphores

• Variables

semaphore mutex; // (initially = 1)

semaphore next; // (initially = 0)

int next_count = 0;

• Each procedure F will be replaced by

wait(mutex);

…

body of F;

…

if (next_count > 0)

signal(next)

else

signal(mutex);

• Mutual exclusion within a monitor is ensured
Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 19

Monitor Implementation – Condition Variables

• For each condition variable x, we have:

semaphore x_sem; // (initially =
0)

int x_count = 0;

• The operation x.wait can be implemented as:

x_count++;
if (next_count > 0)

signal(next);
else

signal(mutex);
wait(x_sem);
x_count--;

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 20

Monitor Implementation (Cont.)

• The operation x.signal can be implemented as:

if (x_count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 21

Resuming Processes within a Monitor

• If several processes queued on condition x, and
x.signal() executed, which should be resumed?

• FCFS frequently not adequate

• conditional-wait construct of the form x.wait(c)
• Where c is priority number

• Process with lowest number (highest priority) is scheduled
next

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 22

• Allocate a single resource among competing processes using priority
numbers that specify the maximum time a process plans to use the
resource

R.acquire(t);

...

access the resurce;

...

R.release;

• Where R is an instance of type ResourceAllocator

Single Resource allocation

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 23

A Monitor to Allocate Single Resource

monitor ResourceAllocator

{

boolean busy;

condition x;

void acquire(int time) {

if (busy)

x.wait(time);

busy = TRUE;

}

void release() {

busy = FALSE;

x.signal();

}

initialization code() {

busy = FALSE;

}

}
Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 24

Synchronization Examples

• Classic Problems of Synchronization

• Synchronization within the Kernel

• POSIX Synchronization

• Synchronization in Java

• Alternative Approaches

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 25

Classical Problems of Synchronization

• Classical problems used to test newly-proposed
synchronization schemes
• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 26

Bounded-Buffer Problem

• n buffers, each can hold one item

• Semaphore mutex initialized to the value 1

• Semaphore full initialized to the value 0

• Semaphore empty initialized to the value n

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 27

Bounded Buffer Problem (Cont.)

• The structure of the producer process

do {

...

/* produce an item in next_produced */

...

wait(empty);

wait(mutex);

...

/* add next produced to the buffer */

...

signal(mutex);

signal(full);

} while (true);

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 28

Bounded Buffer Problem (Cont.)

• The structure of the consumer process

Do {

wait(full);

wait(mutex);

...

/* remove an item from buffer to next_consumed */

...

signal(mutex);

signal(empty);

...

/* consume the item in next consumed */

...

} while (true);

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 29

Readers-Writers Problem

• A data set is shared among a number of concurrent processes
• Readers – only read the data set; they do not perform any updates
• Writers – can both read and write

• Problem – allow multiple readers to read at the same time
• Only one single writer can access the shared data at the same time

• Several variations of how readers and writers are considered – all
involve some form of priorities

• Shared Data
• Data set
• Semaphore rw_mutex initialized to 1
• Semaphore mutex initialized to 1
• Integer read_count initialized to 0

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 30

Readers-Writers Problem (Cont.)

• The structure of a writer process

do {

wait(rw_mutex);

...

/* writing is performed */

...

signal(rw_mutex);

} while (true);

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 31

Readers-Writers Problem (Cont.)

• The structure of a reader process
do {

wait(mutex);

read_count++;

if (read_count == 1)

wait(rw_mutex);

signal(mutex);

...

/* reading is performed */

...

wait(mutex);

read count--;

if (read_count == 0)

signal(rw_mutex);

signal(mutex);

} while (true);

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 32

Readers-Writers Problem Variations

• First variation – no reader kept waiting unless writer has
permission to use shared object

• Second variation – once writer is ready, it performs the write ASAP

• Both may have starvation leading to even more variations

• Problem is solved on some systems by kernel providing reader-
writer locks

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 33

Dining-Philosophers Problem

• Philosophers spend their lives alternating thinking and eating

• Don’t interact with their neighbors, occasionally try to pick up 2 chopsticks (one at a time) to eat
from bowl

• Need both to eat, then release both when done

• In the case of 5 philosophers

• Shared data

• Bowl of rice (data set)

• Semaphore chopstick [5] initialized to 1

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 34

Dining-Philosophers Problem Algorithm

• The structure of Philosopher i:
do {

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

• What is the problem with this algorithm?

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 35

Monitor Solution to Dining Philosophers

monitor DiningPhilosophers

{

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) {

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self[i].wait;

}

void putdown (int i) {

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 36

Solution to Dining Philosophers (Cont.)

void test (int i) {

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() {

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 37

• Each philosopher i invokes the operations pickup() and putdown() in
the following sequence:

DiningPhilosophers.pickup(i);

EAT

DiningPhilosophers.putdown(i);

• No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 38

A Monitor to Allocate Single Resource
monitor ResourceAllocator

{

boolean busy;

condition x;

void acquire(int time) {

if (busy)

x.wait(time);

busy = TRUE;

}

void release() {

busy = FALSE;

x.signal();

}

initialization code() {

busy = FALSE;

}

}

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 39

Synchronization Examples

• Solaris

• Windows

• Linux

• Pthreads

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 40

Solaris Synchronization

• Implements a variety of locks to support multitasking, multithreading
(including real-time threads), and multiprocessing

• Uses adaptive mutexes for efficiency when protecting data from short code
segments

• Starts as a standard semaphore spin-lock
• If lock held, and by a thread running on another CPU, spins
• If lock held by non-run-state thread, block and sleep waiting for signal of lock being released

• Uses condition variables
• Uses readers-writers locks when longer sections of code need access to

data
• Uses turnstiles to order the list of threads waiting to acquire either an

adaptive mutex or reader-writer lock
• Turnstiles are per-lock-holding-thread, not per-object

• Priority-inheritance per-turnstile gives the running thread the highest of
the priorities of the threads in its turnstile

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 41

Windows Synchronization

• Uses interrupt masks to protect access to global resources on
uniprocessor systems

• Uses spinlocks on multiprocessor systems
• Spinlocking-thread will never be preempted

• Also provides dispatcher objects user-land which may act
mutexes, semaphores, events, and timers
• Events

• An event acts much like a condition variable

• Timers notify one or more thread when time expired

• Dispatcher objects either signaled-state (object available) or non-
signaled state (thread will block)

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 42

Linux Synchronization

• Linux:
• Prior to kernel Version 2.6, disables interrupts to implement short

critical sections
• Version 2.6 and later, fully preemptive

• Linux provides:
• Semaphores
• atomic integers
• spinlocks
• reader-writer versions of both

• On single-cpu system, spinlocks replaced by enabling and
disabling kernel preemption

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 43

Pthreads Synchronization

• Pthreads API is OS-independent

• It provides:
• mutex locks

• condition variable

• Non-portable extensions include:
• read-write locks

• spinlocks

Alternative Approaches

• Transactional Memory

• OpenMP

• Functional Programming Languages

• A memory transaction is a sequence of read-
write operations to memory that are
performed atomically.

void update()

{

/* read/write memory */

}

Transactional Memory

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 46

• OpenMP is a set of compiler directives and API
that support parallel progamming.

void update(int value)

{

#pragma omp critical

{

count += value

}

}

The code contained within the #pragma omp
critical directive is treated as a critical
section and performed atomically.

OpenMP

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 47

• Functional programming languages offer a
different paradigm than procedural languages
in that they do not maintain state.

• Variables are treated as immutable and
cannot change state once they have been
assigned a value.

• There is increasing interest in functional
languages such as Erlang and Scala for their
approach in handling data races.

Functional Programming Languages

Feb 2019 Copyright 2018 Silberschatz, Gavin & Gagne 48

