CLASSIC
MEMORY ATKS & DEFS

CMSC 414

JAN 30 2018

&

TODAY'S RESOURCES

0 Fhack 19 Qo
Volams Seven, lasoe Tocty-Nane Filo 11 ¢f IE
Bug Trag, 10, el Uk cpronn O

bring you
Smashing The Stack For Fun And Profit

Aleph One

T o s T O paage e g oo Oy € imglemenbidions o is possiBe e oomegpd e
excention s1azk by writie § past e end of anaresy deslacod mro in & routise. Cods than dees this is
said o smish the stack, amc cun catse rabem from the ot ne o juem i = rendem adires, s
can procuce sane of the mest ‘nsdd oos dat-dependent bugs knowa w0 menkind. Varioms indode
Urash U stk senbble e sk, mangde e savs, e b come o, (e sleis o ool used, 2o Jais is
mover doar incotivanlly. Soc spam; sec <290 i by Jamcango om coec, momory keak, preccdence
Jossage, overna sommw.

introduction

U L Ll Low mnowthis Usere lues been o ke wcseses ol bulles everTowy vuliecabuliies beag Woth
dscovere :nd explotzed. Examples of thzse wre svsdog, spliowe, szadmail .75, LinuxTrec 15D meune, Xt
lincary, at, =i, Ths paper atampts to ecp 2m what buffer oveflows e, and bow ther exphaits wark. Basic
Rovawlexdze ol acsembly s v ared. S0 secentandmg, o ot meonry conospts, oodepanenos wils b e
very belpful but not gece ssacy. We also assume we are serking with an Intel xBE CPU, and ot the operating
s o Lomun, Sams dioo demlions bebooe we bugn A bafler is spy @ comiguius beck of compuler
memery tat mold mulipls imstercss of the same dom cype. C progrummees noaally sseciste witk the wond
buller aays, Most conumccdy, chacacte: maes. Audya, ke all vasabks i U can be declaald eildsa sisbic o
dhyramie. Stalic vesiables sne olhocs od ot oo lies oo the de g seprent. Dy namie sesbles we = bocoed oin
time oo the seck. To overflow 14 ta flow, oc fil over the top, arms, o 2oands. We will coccem ourselves mly
ot the wree oy ol dyse ne Bolles, o eowese Koows oc stock-bosexd Do one ke

Process Memory Organization

To mcersiard what stack bufers ars we mus: finst understand how 3 process s organized ia memony. Processes
are divided mto chres peginns: Text, Data, and Stack. Wz il conzentratean the dack regicn, bat first a small
orerview al the olher reons s mander The lex negen s ol by he ooogrs oo aed inchedes asds
tinstructicas) and reed-oaly data This regon comesponts o the sext s2cticn of the executable file. This region

e — E—

‘bucs! [CDD Maictainees’ (sontribaing] [surmes <icl (€2

[Secumeniasian]
Teos] [wews] [halule] [sxeg] [wiki]

GDB: The GNU Project Debugger

GDB Documentation

Printed Manuals
The GNU Press has pinted versions of most nienuals, including Debugging with GDB available.
onliu! r‘“’l’) ——— B

Documen

GDB Usg
s
"'h-

Adihtioma

* ‘The
GN
Sof

* Stal
= The
.

Nt
ey

CDE QUICK KEFERENCE oo fmw

Foeifinl Cxxmuh
§2 e (1] dobaz prgmer cdas coendaxs 1org)
() U TR

o rammgcmt 0 fuacticn i 5]

rs lunﬁ-g' . YT BT [ul ﬂ!nl:

" Pardrs rigly vvgres sk

P L L e

- mndn o AR w g AT pr e

- mai L, vy iy v e ok el

. B e LT o)

Starting ODE

= el VR wll e M B

[P X3 2l tack dibacx ag peen

P s e debme vrelas s cas wevdal -
e

¢ ~-talf Coarile sommid 4w aglma

Crgring CDB

Lt AL e L g g

nmEet o k] membah cmaret e,

wcd b rewing pestien

Cettbyg Help
iy IR TR
bedp wee e la s dmripdons Y remm b i

S

AP s Cmn e KT et

Bascubing you Fropow

v et M yow peemos o Wbl wpte

rx ot gom prpn bl i) ugamd
-

o Sewddway v yow peemos o wb) Rpo s dpe
L O

ur AE ren g s g

My A B e LT e

VR wphil apenly anpkes W we P

LI] wedly wocey rmems by

C— e angemend Bl

ow - B L e P

BT - R

BT ENY LAF VIR MO CONCERCT A v

i o . s v hwn o drmmant

Shed Commaes

£5 W e ge vy dem oy Do

e e e g A ey

e . B T

el ced B L T e T e

] R S —

L N L

Ercakpomes weed Wick soints
treak [z iwe oo sockmoi s Wai vomber fe g
L g R w0 remak wela T

Treax hu_fn: 2 ool & \~:|t L

Liwma 4Ll ol Ak o vl Lew Dan cnrred oy

Freas e

Prear ok o vvalgedeh b addes aiee

creas S Ak L AL el Aalreiies

ook oo i ot Drens cond tloatl T o8 waMre cmir

cmd o v aialr sl e piatet 4 Menilguel
R S e R

s emprrnny bemdy ik e warw b
awid vy B N e T
[T B N e, s
COIEL saial WA UL S e e moxe

oy ceow, Jewn vicris lees

-led
ixf» Wreok waw cifmed sevadpo
dnle vk A o il win g vis
. e il R L R R

B L A e L ST LR P
canr b«:!n S e brmcdme o ANt 12
datera o] Asbe boraapduma for vwad poit o]

el [y Sabic bewikoer:i < beuipobee v
cmaie o] Calbi teskpaias O Wb okd)

CEALC CIN 4 eaib e O 3ok o)
Taddde s galey wownm varke

<mble 2ol | watll Lyvsnambnin o b b o
o vhy v

s moamnt P L T e)

CuRADaA L B L s L D T

WA EE 1w Dol h'.tﬂ
mand b v delind ey

@ cul of Corwwand G

Frugrun Slock

Parktmae | o pet o bewes o 01 B B wtard o o &

™ 4 S T L T |
) “

trome b wiwd e ke v e 48k v

B L L

T~ it e s Nes

- e s . b

i frwne [o 0] S e wbeitid Tuim on Pama of o A

ixty wye MR ¥ ke Vi

infs Toealy Joc ol arhtio of solocsed frew

man veg finh.. i sten bu w0 e @i
u.m.g‘pq reee: allTep il xe fonig pocs

Exection Coxtred

vnaks boul edkel (amig, 1 Gusl geolid (e
. M!‘ TR RN e e s

" lt\l‘ll 120009 wel et Lioe pehod: o
» [remnd wown L M owonded

—T-. [sand)

e v madd cvetee e vt

ot lpwrd -

s [rea] T T S S —

» [wead Y

(TP - ot samh o batamibhe wiln tus

= I‘_ z —— -

Wil | e P M CaGl i alae (i Kaded

roaien B T R

s wed P MAKIK M Yaxa ik}
rentag wrdleg swe s b

& ral s o e mnie vl s jme 3

seep b s romtben 0 gt bl S e

SEIE Suidvwe R

L L I NA Wy Skl depiniig L

kot dhvaring oreones vk

Display
etz [0F legrl dmw s ot e o0 e v 8]
pled I 1 wourtes w ke Y

3 oaabui o

¢ el Lk e

- ol od b

< ~ul

ey

. Wk ma ahad Ls 8o ikl

. rov—

] L g pe
wid [11] e Kow prdns s door ot Ao e i
[P0 o —ulw oy w kv e ¢ g

Bemal wws Sedwe ok
» O 3w ERLEY CERS M6 D)
- aViem wa
b et 2am
R ol oads e bent
o ke e Myt
B wende Ags hybed)
) puabing brmat A BRAT bewa, -
» pdi vk xd &3
» e e
couams bt] daty comaiy s smide lad aloue

Autcemat s Display

anay |7] = dow wix ol e oh 1oz o
e e = dm ,'I

Ay Taging W s o e v

IR - R e PR RS U

vl bal sl iged sopasmboms

mble Mar ag G sagevss ond) wand v -

ek Can s oy pewee x ol mamber 0

w or b Lol f Lagie, wopeees s

REFRESHER

* How is program data laid out in memory?
* What does the stack look like?

« What effect does calling (and returning from) a
function have on memory?

» We are focusing on the Linux process model

» Similar to other operating systems

ALL PROGRAMS ARE STORED IN MEMORY

ALL PROGRAMS ARE STORED IN MEMORY

4G Oxffffffff

0 0x00000000

ALL PROGRAMS ARE STORED IN MEMORY

4G Oxffffffff

The process’s view
of memory is that
it owns all of it

0 0x00000000

ALL PROGRAMS ARE STORED IN MEMORY

4@ Oxffffffff

\

The process’s view In reality, these are
of memory is that virtual addresses;
it owns all of it the OS/CPU map

them to physical
addresses

/

0 0x00000000

THE INSTRUCTIONS THEMSELVES ARE STORED IN MEMORY

4G Oxffffffff

O| 0x00000000

THE INSTRUCTIONS THEMSELVES ARE STORED IN MEMORY

4G Oxffffffff

0x4c2 sub $0x224,%esp
0x4cl push %ecx

O0x4bf mov %esp, %ebp

Ox4be push %ebp

0x00000000

0

DATA'S LOCATION DEPENDS ON HOW IT'S CREATED

4G Oxffffffff

0 0x00000000

DATA'S LOCATION DEPENDS ON HOW IT'S CREATED

4G Oxffffffff

static const int y=10;

0 0x00000000

DATA'S LOCATION DEPENDS ON HOW IT'S CREATED

4G Oxffffffff

static int x;

static const int y=10;

0 0x00000000

DATA'S LOCATION DEPENDS ON HOW IT'S CREATED

4G Oxffffffff

static int x;

Known at

. . static const int y=10;
compile time

0 0x00000000

DATA'S LOCATION DEPENDS ON HOW IT'S CREATED

static int x;

Known at

. . static const int y=10;
compile time

0 0x00000000

DATA'S LOCATION DEPENDS ON HOW IT'S CREATED

Set when 4C | OXfEEEffff
process starts _

static int x;

Known at

. . static const int y=10;
compile time

0 0x00000000

DATA'S LOCATION DEPENDS ON HOW IT'S CREATED

Set when Oxffffffff
process starts e £0) 1
int x;

_ static const int y=10;

0 0x00000000

Known at
compile time

DATA'S LOCATION DEPENDS ON HOW IT'S CREATED

Oxffffffff
S| T e
int X;

_ static const int y=10;

0 0x00000000

Set when
process starts

Known at
compile time

DATA'S LOCATION DEPENDS ON HOW IT'S CREATED

Set when Oxffffffff
process starts e £0) 1
int x;

Dynamically
sized at runtime

malloc(sizeof(long));

static int x;

_ static const int y=10;

0 0x00000000

Known at
compile time

DATA'S LOCATION DEPENDS ON HOW IT'S CREATED

Set when Oxffffffff
process starts e £0) 1
int x;

Dynamically
sized at runtime

malloc(sizeof(long));

static int x;

_ static const int y=10;

0 0x00000000

Known at
compile time

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

0x00000000 Oxffffffff

|| Hep — +- Stack

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

_ Heap —— <—T_

Stack
pointer

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

_ Hesp — <—T_

Stack PHSE ;
. pus
pomter push 3

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

T_

Stack PHSE ;
. pus
pomter push 3

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

|

Stack push 1
. push 2
pomter push 3

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

T._

Stack push 1
. push 2
pomter push 3

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

|

Stack push 1
. push 2
pomter push 3

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

T.._

Stack push 1
. push 2
pomter push 3

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

|

Stack push 1
. push 2
pomter push 3

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

T..._

Stack push 1
. push 2
pomter push 3

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

T..._

Stack push 1
. push 2
pomter push 3

return

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff

...T_

Stack push 1

. push 2
pointer " 3

return

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

00

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff
Heap 3 2 1 Stack
apportioned by the OS; Stack push 1
managed in-process pointer gﬁzﬁ ;
by ma”OC return

WE ARE GOING TO FOCUS ON RUNTIME ATTACKS

00

Stack and heap grow in opposite directions

Compiler provides instructions that
adjusts the size of the stack at runtime

0x00000000 Oxffffffff
Heap 3 2 1 Stack
apportioned by the OS; Stack push 1
managed in-process pointer gﬁzﬁ ;
by ma”OC return

Focusing on the stack for now

STACK LAYOUT WHEN CALLING FUNCTION

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int 1loc3;

0x00000000 Oxffffffff

STACK LAYOUT WHEN CALLING FUNCTION

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int 1loc3;

}
0x00000000 Oxffffffff
Arguments
pushed in

reverse order
of code

STACK LAYOUT WHEN CALLING FUNCTION

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int 1loc3;

}
0x00000000 Oxffffffff
Local variables Arguments
pushed in the pushed in
same order as reverse order
they appear of code

in the code

STACK LAYOUT WHEN CALLING FUNCTION

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int 1loc3;

}
0x00000000 Oxffffffff
Local variables Arguments
pushed in the pushed in
same order as reverse order
they appear of code

in the code

STACK LAYOUT WHEN CALLING FUNCTION

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int 1loc3;

}
Two values between the arguments

0x00000000 and the local variables OXfEfEfEfff
Local variables Arguments
pushed in the pushed in
same order as reverse order
they appear of code

in the code

STACK LAYOUT WHEN CALLING FUNCTION

00

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int loc3;

0x00000000 Oxffffffff

caller’s data

STACK LAYOUT WHEN CALLING FUNCTION

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int loc3;

}
0x00000000 Oxffffffff
arg) g2 arg3_calers dat
Arguments
pushed in

reverse order
of code

STACK LAYOUT WHEN CALLING FUNCTION

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int loc3;

}
0x00000000 Oxffffffff
oz Toct S5 B B collers dea
Local variables Arguments
pushed in the pushed in
same order as reverse order
they appear of code

in the code

STACK LAYOUT WHEN CALLING FUNCTION

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int loc3;

}
0x00000000 Oxffffffff
o [ieet 1772 7 e (582 (98 calrs s
Local variables Arguments
pushed in the pushed in
same order as reverse order
they appear of code

in the code

STACK LAYOUT WHEN CALLING FUNCTION

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int loc3;

}
Two values between the arguments

0x00000000 and the local variables OXFfEfEfffff
-- caller's data ---
Local variables Arguments
pushed in the pushed in
same order as reverse order
they appear of code

in the code

STACK FRAMES

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int loc3;

0x00000000 Oxffffffff

caller’s data

STACK FRAMES

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int loc3;

0x00000000 Oxffffffff

caller’s data

STACK FRAMES

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int loc3;

0x00000000 Oxffffffff

caller’s data

STACK FRAMES

void func(char *argl, int arg2, int arg3)
{
char locl[4]
int loc2;
int loc3;
}
0x00000000 Oxffffffff

caller’'s data ---

The part of the stack corresponding to
this particular invocation of
this particular function

STACK FRAMES

00

void main() { countUp(3); }

volid countUp(int n) {
if(n > 1)
countUp(n-1);
printf(”%d\n”, n);

0x00000000 Oxffffffff

main()

STACK FRAMES

void main() { countUp(3); }

volid countUp(int n) {
if(n > 1)
countUp(n-1);
printf(”%d\n”, n);
}

0x00000000 Oxffffffff

|

Stack
pointer

main()

STACK FRAMES

void main() { countUp(3); }

volid countUp(int n) {
if(n > 1)
countUp(n-1);
printf(”%d\n”, n);
}

0x00000000 Oxffffffff

countUp(3) main()

|

Stack
pointer

STACK FRAMES

void main() { countUp(3); }

volid countUp(int n) {
if(n > 1)
countUp(n-1);
printf(”%d\n”, n);

}
0x00000000 Oxffffffff

countUp(2) countUp(3) main()

|

Stack
pointer

STACK FRAMES

void main() { countUp(3); }

volid countUp(int n) {
if(n > 1)
countUp(n-1);
printf(”%d\n”, n);

}
0x00000000 Oxffffffff

countUp(1) countUp(2) countUp(3) main()

|

Stack
pointer

STACK FRAMES

void main() { countUp(3); }

volid countUp(int n) {
if(n > 1)
countUp(n-1);
printf(”%d\n”, n);

}
0x00000000 Oxffffffff

countUp(1) countUp(2) main()

|

Stack
pointer

STACK FRAMES

void main() { countUp(3); }

volid countUp(int n) {
if(n > 1)
countUp(n-1);
printf(”%d\n”, n);
}

0x00000000 Oxffffffff

countUp(1) main()

|

Stack
pointer

STACK FRAMES

void main() { countUp(3); }

volid countUp(int n) {
if(n > 1)
countUp(n-1);
printf(”%d\n”, n);
}

0x00000000 Oxffffffff

|

Stack
pointer

main()

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{

char locl[4]
int loc2;
int loc3;
loc2++;

0x00000000 Oxffffffff

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{

char locl[4]

int loc2; Q: Where is (this) loc2?
int loc3;
loc2++;
}
0x00000000 Oxffffffff

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{

char locl[4]

int loc2; Q: Where is (this) loc2?
int loc3;
loc2++;
}
0x00000000 Oxffffffff

T

Oxbfff£f323

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{

char locl[4]

int loc2; Q: Where is (this) loc2?
int loc3;
loc2++;
}
0x00000000 Oxffffffff
Oxbfff£f323

Undecidable at
compile time

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{

char locl[4]

int loc2; Q: Where is (this) loc2?
int loc3;

loc2++;

0x00000000 Oxffffffff

et

Oxbfff£f323

Undecidable at - | don't know where loc2 is,
compile time

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2; Q: Where is (this) loc2?
int loc3;
loc2++;

}

0x00000000 Oxffffffff

Variable args?
Oxbfff£f323

Undecidable at - | don't know where loc2 is,

compile time - and | don’t know how many args

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2; Q: Where is (this) loc2?
int loc3;
loc2++;

}

0x00000000 Oxffffffff

4B 4B 4B 4B variable args?
Oxbfff£f323

Undecidable at - | don't know where loc2 is,

compile time - and | don’t know how many args

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2; Q: Where is (this) loc2?
int loc3;
loc2++;

}

0x00000000 Oxffffffff

4B 4B 4B 4B variable args?
Oxbfff£f323

Undecidable at - | don't know where loc2 is,

compile time - and | don't know how many args

- but loc2 is always 8B betfore “?77?"s

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{

char locl[4]

int loc2; Q: Where is (this) loc2?
int loc3;

loc2++;

0x00000000 Oxffffffff

- | don't know where loc2 is,
- and | don’t know how many args
- but loc2 is always 8B betfore “?77?"s

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2; Q: Where is (this) loc2?
int loc3;
loc2++;

}

0x00000000 Oxffffffff

sebp
Frame pointer - | don't know where loc2 is,
- and | don’t know how many args

- but loc2 is always 8B betfore “?77?"s

ACCESSING VARIABLES

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2; Q: Where is (this) loc2?
int loc3; .
loc2++; A: -8(%ebp)

}

0x00000000 Oxffffffff

sebp
Frame pointer - | don't know where loc2 is,
- and | don’t know how many args

- but loc2 is always 8B betfore “?77?"s

NOTATION

sebp A memory address

(3ebp) The value at memory address %ebp
(like dereferencing a pointer)

NOTATION

sebp A memory address

(3ebp) The value at memory address %ebp
(like dereferencing a pointer)

0x00000000 Oxffffffff

NOTATION

0xbff£03b8 sebp A memory address

(3ebp) The value at memory address %ebp
(like dereferencing a pointer)

0x00000000 Oxffffffff

NOTATION

0xbff£03b8 sebp A memory address

(3ebp) The value at memory address %ebp
(like dereferencing a pointer)

Oxbfff03b8

0x00000000 T Oxffffffff

sebp

NOTATION

0xbff£03b8 sebp A memory address
0xbf££0720 (¥€bP) The value at memory address %ebp
(like dereferencing a pointer)
0xbff£03b8
0xbf££0720
0x00000000 OXEEEEEEEE

|

sebp

NOTATION

0xbff£03b8 sebp A memory address
0xbf££0720 (¥€bP) The value at memory address %ebp
(like dereferencing a pointer)
pushl %ebp
0xbff£03b8
0xbf££0720
0x00000000 OXEEEEEEEE

|

sebp

NOTATION

0xbff£03b8 sebp A memory address
0xbf££0720 (¥€bP) The value at memory address %ebp
(like dereferencing a pointer)
pushl %ebp
zesp
l 0xbff£03b8
0xbf££0720
0x00000000 OXEEEEEEEE

|

sebp

NOTATION

0xbff£03b8 sebp A memory address
0xbf££0720 (¥€bP) The value at memory address %ebp
(like dereferencing a pointer)
pushl %ebp
zesp
l 0xbff£03b8
0xbf££0720
0x00000000 OXEEEEEEEE

|

sebp

NOTATION

0xbff£03b8 sebp A memory address
0xbf££0720 (¥€bP) The value at memory address %ebp
(like dereferencing a pointer)
pushl %ebp
zesp
{ 0xbf££03b8
0xbf££0720
0x00000000 OXEEEEEEEE

|

sebp

NOTATION

0xbff£03b8 sebp A memory address

0xbf££0720 (¥€bP) The value at memory address %ebp
(like dereferencing a pointer)

pushl %ebp

zesp
l 0XbEE£03b8

O0xbfff03b8 O0xbf£f£f0720
0x00000000 T Oxffffffff

sebp

NOTATION

0xbff£03b8 sebp A memory address

0xbf££0720 (¥€bP) The value at memory address %ebp
(like dereferencing a pointer)

pushl %ebp

mov.l %eSp %ebp /* %ebp = %esp */

zesp
l 0XbEE£03b8

O0xbfff03b8 O0xbf£f£f0720
0x00000000 T Oxffffffff

sebp

NOTATION

0xbff£03b8 sebp A memory address

0xbf££0720 (¥€bP) The value at memory address %ebp
(like dereferencing a pointer)

pushl %ebp

mov.l %eSp %ebp /* %ebp = %esp */

zesp
l 0XbEE£03b8

O0xbfff03b8 O0xbf£f£f0720
0x00000000 T Oxffffffff

sebp

NOTATION

0xbff£03b8 sebp A memory address

0xbf££0720 (¥€bP) The value at memory address %ebp
(like dereferencing a pointer)

pushl %ebp

mov.l %eSp %ebp /* %ebp = %esp */

0xbf££0200 Sesp
l 0XbEE£03b8

O0xbfff03b8 O0xbf£f£f0720
0x00000000 T Oxffffffff

sebp

NOTATION

0xb£££63b8 %ebp A memory address
0xXbf££0200

0xbf££0720 (¥€bP) The value at memory address %ebp
(like dereferencing a pointer)

pushl %ebp

mov.l %eSp %ebp /* %ebp = %esp */

0xbf££0200 Sesp
l 0XbEE£03b8

O0xbfff03b8 O0xbf£f£f0720
0x00000000 T Oxffffffff

sebp

NOTATION

0xb£££63b8 %ebp A memory address
0xXbf££0200

6xbf££6726- (¥€bP) The value at memory address %ebp
0xbff£03b8 . . .
(like dereferencing a pointer)

pushl %ebp

mov.l %eSp %ebp /* %ebp = %esp */

0xbf££0200 Sesp
l 0XbEE£03b8

O0xbfff03b8 O0xbf£f£f0720
0x00000000 T Oxffffffff

sebp

NOTATION

0xb£££63b8 %ebp A memory address
0xXbf££0200

6xbf££6726- (¥€bP) The value at memory address %ebp
0xbff£03b8 . . .
(like dereferencing a pointer)

pushl %ebp
mov.l %eSp %ebp /* %ebp = %esp */
movl (%ebp) %ebp /+ sebp = (3ebp) */

0xbf££0200 Sesp
l 0XbEE£03b8

O0xbfff03b8 O0xbf£f£f0720
0x00000000 T Oxffffffff

sebp

NOTATION

0xb£££63b8 %ebp A memory address
0xXbf££0200

6xbf££6726- (¥€bP) The value at memory address %ebp
0xbff£03b8 . . .
(like dereferencing a pointer)

pushl %ebp
mov.l %eSp %ebp /* %ebp = %esp */
movl (%ebp) %ebp /+ sebp = (3ebp) */

0xbf££0200 Sesp
l 0XbEE£03b8

O0xbfff03b8 O0xbf£f£f0720
0x00000000 T Oxffffffff

3ebp

RETURNING FROM FUNCTIONS

int main()

{

func(“Hey”, 10, =-3);

0x00000000 Oxffffffff

Stack frame
2 ebp for this call to func

RETURNING FROM FUNCTIONS

int main()

{

func(“Hey”, 10, =-3);

0x00000000 Oxffffffff

Stack frame
2 ebp for this call to func

RETURNING FROM FUNCTIONS

int main()

{

func(“Hey”, 10, =-3);

0x00000000 Oxffffffff

Stack frame
sepbp for this call to func Sebp

RETURNING FROM FUNCTIONS

int main()

{
func(“Hey”, 10, =3);

"* Q: How do we restore %ebp?

}

0x00000000 Oxffffffff

Stack frame
2ebp for this call to func Sebp

RETURNING FROM FUNCTIONS

int main()

{
func(“Hey”, 10, =3);

"* Q: How do we restore %ebp?

}

0x00000000 Oxffffffff

Stack frame
for this call to func Sebp

RETURNING FROM FUNCTIONS

int main()

{
func(“Hey”, 10, =3);

"* Q: How do we restore %ebp?

}

Tesp

0x00000000 Oxffffffff

Stack frame
for this call to func Sebp

RETURNING FROM FUNCTIONS

int main()

{
func(“Hey”, 10, =3);

"* Q: How do we restore %ebp?

}

zesp

0x00000000 Oxffffffff

Stack frame
for this call to func Sebp

1. Push %ebp before locals

RETURNING FROM FUNCTIONS

int main()

{
func(“Hey”, 10, =3);

"* Q: How do we restore %ebp?

}

zesp

0x00000000 Oxffffffff

Stack frame
2ebp for this call to func Sebp

1. Push %ebp before locals
2. Set Y%ebp to current %esp

RETURNING FROM FUNCTIONS

int main()

{
func(“Hey”, 10, =-3);

"~ Q: How do we restore %ebp?

}

zesp

0x00000000 Oxffffffff

Stack frame
sepbp for this call to func 2 ebp
1. Push %ebp before locals

2. Set %ebp to current %esp
3. Set Y%ebp to(%ebp) at return

RETURNING FROM FUNCTIONS

int main()

{

func(“Hey”, 10, =-3);

0x00000000 Oxffffffff

Stack frame
sepbp for this call to func Sebp

RETURNING FROM FUNCTIONS

int main()

{

func(“Hey”, 10, =3);
-+ Q: How do we resume here?

}

0x00000000 Oxffffffff

Stack frame
2ebp for this call to func Sebp

INSTRUCTIONS THEMSELVES ARE IN MEMORY

4@ Oxffffffff

Ox4a7 mov $S0x0, %eax

O0x4a2 call <func>

0x49b movl $0x804.., (%esp)
0x493 movl $0xa,0x4(%esp)

0x00000000

INSTRUCTIONS THEMSELVES ARE IN MEMORY

4@ Oxffffffff

Ox4a7 mov $S0x0, %eax
Ox4a2 call <func>
0x49b movl $0x804.., (%esp)

0x493 movl $0xa,0x4(%esp) —— Zeip

0x00000000

INSTRUCTIONS THEMSELVES ARE IN MEMORY

4@ Oxffffffff

Ox4a7 mov $S0x0, %eax
Ox4a2 call <func>

0x49b movl $0x804.., (%eSp) ¢ %eip
0x493 movl $0xa,0x4(%esp)

0x00000000

INSTRUCTIONS THEMSELVES ARE IN MEMORY

4@ Oxffffffff

Ox4a7 mov $S0x0, %eax

Ox4a2 call <func> — %eip
0x49b movl $0x804.., (%esp)

0x493 movl $0xa,0x4(%esp)

0x00000000

INSTRUCTIONS THEMSELVES ARE IN MEMORY

4@ Oxffffffff

0x5bf mov %esp, 3ebp

0x5be push %ebp

Ox4a7 mov $S0x0, %eax

Ox4a2 call <func> — %eip
0x49b movl $0x804.., (%esp)

0x493 movl $0xa,0x4(%esp)

0x00000000

INSTRUCTIONS THEMSELVES ARE IN MEMORY

4@ Oxffffffff

0x5bf mov %esp, %ebp
0x5be push %ebp <4— %eip

Ox4a7 mov $S0x0, %eax

O0x4a2 call <func>

0x49b movl $0x804.., (%esp)
0x493 movl $0xa,0x4(%esp)

0x00000000

INSTRUCTIONS THEMSELVES ARE IN MEMORY

4@ Oxffffffff

- +«——— %eip
0x5bf mov %esp, 3ebp

0x5be push %ebp

Ox4a7 mov $S0x0, %eax

O0x4a2 call <func>

0x49b movl $0x804.., (%esp)
0x493 movl $0xa,0x4(%esp)

0x00000000

INSTRUCTIONS THEMSELVES ARE IN MEMORY

4@ Oxffffffff

0x5bf mov %esp, 3ebp

0x5be push %ebp

Ox4a7 mov $0x0,%eax — %ej_p
O0x4a2 call <func>

0x49b movl $0x804.., (%esp)

0x493 movl $0xa,0x4(%esp)

0x00000000

RETURNING FROM FUNCTIONS

int main()

{

func(“Hey”, 10, =3);
.-+ Q: How do we resume here?

}

0x00000000 Oxffffffff

Stack frame
2ebp for this call to func Sebp

RETURNING FROM FUNCTIONS

int main()

{

func(“Hey”, 10, =3);
.-+ Q: How do we resume here?

}

0x00000000 Oxffffffff

Stack frame
2ebp for this call to func Sebp

Push next %eip
before call

RETURNING FROM FUNCTIONS

int main()

{

func(“Hey”, 10, =3);
.-+ Q: How do we resume here?

}

0x00000000 Oxffffffff

Stack frame
2ebp for this call to func Sebp

Push next %eip
before call

RETURNING FROM FUNCTIONS

int main()

{

func(“Hey”, 10, =3);
.-+ Q: How do we resume here?

}

0x00000000 Oxffffffff

Stack frame
2ebp for this call to func Sebp

Set %eip to 4(%ebp) Push next %eip
at return before call

RETURNING FROM A FUNCTION

In C In compiled assembly
leave: mov %esp %ebp
return; pop %ebp
ret: pop %eip

Current stack frame

Telp %esp Sebp

RETURNING FROM A FUNCTION

In C In compiled assembly
leave: mov %esp %ebp
return; pop %ebp
ret: pop %eip

Current stack frame

S

Telp %esp Sebp \
Old frame pointer

RETURNING FROM A FUNCTION

In C In compiled assembly
leave: mov %esp %ebp
return; pop %ebp
ret: pop %eip
Caller’s code
j Current stack frame

Telp %esp Sebp \
Old frame pointer

RETURNING FROM A FUNCTION

In C In compiled assembly
leave :+mov Tesp %ebp
return; pop %ebp
ret: pop %eip
Caller’s code
j Current stack frame

Telp %esp Sebp \
Old frame pointer

RETURNING FROM A FUNCTION

In C In compiled assembly
leave:*mov Tesp %ebp
return; pop %ebp
ret: pop %eip

Current stack frame

RETURNING FROM A FUNCTION

In C In compiled assembly
leave: mov %esp %ebp
return; +pop %ebp
ret: pop %eip

Current stack frame

$elp Sebp %esp

RETURNING FROM A FUNCTION

In C In compiled assembly
leave: mov %esp %ebp
return; +pop %ebp
ret: pop %eip

Current stack frame

S

Selp 3esp Tebp

RETURNING FROM A FUNCTION

In C In compiled assembly

leave: mov %esp %ebp
return; pop %ebp

ret: wPppop %eip

Current stack frame

S

3elp sesp Tebp

RETURNING FROM A FUNCTION

In C In compiled assembly

leave: mov 3%esp %ebp

ret: * pop %eip

Current stack frame

3elp sesp Tebp

The next instruction is to “remove”
the arguments off the stack

RETURNING FROM A FUNCTION

In C In compiled assembly

leave: mov %esp %ebp
return; pop %ebp

ret: wPppop %eip

Current stack frame

1

3elp esp %ebp

The next instruction is to “remove” And now we’re
the arguments off the stack back where we started

STACK & FUNCTIONS: SUMMARY

STACK & FUNCTIONS: SUMMARY

Calling function (before calling):

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: e.g., %eip + 2

3.Jump to the function’s address

STACK & FUNCTIONS: SUMMARY

00

Calling function (before calling):

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: e.g., %eip + 2

3.Jump to the function’s address

Called function (when called):

4.Push the old frame pointer onto the stack: push %ebp

5.Set frame pointer %ebp to where the end of the stack is right now: %ebp=%esp
6.Push local variables onto the stack; access them as offsets from %ebp

STACK & FUNCTIONS: SUMMARY

00

Calling function (before calling):

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: e.g., %eip + 2

3.Jump to the function’s address

Called function (when called):

4.Push the old frame pointer onto the stack: push %ebp

5.Set frame pointer %ebp to where the end of the stack is right now: %ebp=%esp
6.Push local variables onto the stack; access them as offsets from %ebp

Called function (when returning):
/.Reset the previous stack frame: %esp = %ebp; pop %ebp
8.Jump back to return address: pop %eip

STACK & FUNCTIONS: SUMMARY

00

Calling function (before calling):

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after
control returns to you: e.g., %eip + 2

3.Jump to the function’s address

Called function (when called):

4.Push the old frame pointer onto the stack: push %ebp

5.Set frame pointer %ebp to where the end of the stack is right now: %ebp=%esp
6.Push local variables onto the stack; access them as offsets from %ebp

Called function (when returning):
/.Reset the previous stack frame: %esp = %ebp; pop %ebp
8.Jump back to return address: pop %eip

Calling function (after return):

9.Remove the arguments off of the stack: %esp = %esp + number of bytes of args

BUFFER OVERFLOW
ATTACKS

BUFFER OVERFLOWS: HIGH LEVEL

00

e Buffer =

- Contiguous set of a given data type

+ CommoninC
- All strings are buffers of char’s

e Qverflow =

« Put more into the buffer than it can hold
* Where does the extra data go?

* Well now that you're experts in memory layouts...

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
char buffer[4];

strcpy(buffer, argl);

}

int main()

{

char *mystr = “AuthMe!”;
func (mystr);

A BUFFER OVERFLOW EXAMPLE

00

void func(char *argl)

{
char buffer[4];

strcpy(buffer, argl);

}

int main()

{

char *mystr = “AuthMe!”;
func (mystr);

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
char buffer[4];

strcpy(buffer, argl);

}

int main()

{

char *mystr = “AuthMe!”;
func (mystr);

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
char buffer[4];

strcpy(buffer, argl);

}

int main()

{

char *mystr = “AuthMe!”;
func (mystr);

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
char buffer[4];
strcpy(buffer, argl);

}

int main()

{
char *mystr = “AuthMe!”;
func (mystr);

}

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
char buffer[4];
strcpy(buffer, argl);

}

int main()

{
char *mystr = “AuthMe!”;
func (mystr);

}

| 090000 sebp ‘teip sargl

buffer

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
char buffer[4];
strcpy(buffer, argl);

}

int main()

{
char *mystr = “AuthMe!”;
func (mystr);

}

buffer

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
char buffer[4];
strcpy(buffer, argl);

}

int main()

{
char *mystr = “AuthMe!”;
func (mystr);

}

buffer

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
char buffer[4];
strcpy(buffer, argl);

}

int main()

{
char *mystr = “AuthMe!”;
func (mystr);

}

Upon return, sets $ebp to 0x0021654d

M e ! \O

| natomosaesa00 veip sargl

buffer

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
char buffer[4];
strcpy(buffer, argl);

}

int main()

{
char *mystr = “AuthMe!”;
func (mystr);

}

Upon return, sets $ebp to 0x0021654d

M e ! \O

| nu b ascsmo0 seip sargl |

buf fer SEGFAULT (0x00216551)

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...
}

int main()

{

char *mystr = “AuthMel!”;
func (mystr);

A BUFFER OVERFLOW EXAMPLE

00

void func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...
}

int main()

{

char *mystr = “AuthMel!”;
func (mystr);

A BUFFER OVERFLOW EXAMPLE

00

void func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

}

&arqgl

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

}

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

}

A BUFFER OVERFLOW EXAMPLE

void func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

}

authenticated

A BUFFER OVERFLOW EXAMPLE

volid func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

}

buffer authenticated

A BUFFER OVERFLOW EXAMPLE

volid func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

}

At n 00000000 sebp beip sargl

buffer authenticated

A BUFFER OVERFLOW EXAMPLE

volid func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

}

M e ! \O

buffer authenticated

A BUFFER OVERFLOW EXAMPLE

volid func(char *argl)

{
int authenticated = 0;
char buffer[4];
strcpy(buffer, argl);
if (authenticated) { ...

}

int main()

{
char *mystr = “AuthMe!”;
func(mystr);

}

Code still runs: user now 'authenticated’
M e ! \O

buffer authenticated

volid vulnerable()

{
char buf[80];

gets(buf);

volid vulnerable()
{
char buf[80];
gets(buf);
}

volid still vulnerable()

{
char *buf = malloc(80);

gets(buf);

volid safe()

{
char buf[80];

fgets(buf, 64, stdin);

volid safe()

{

char buf[80];
fgets(buf, 64, stdin);

volid safer ()

{

char buf[80];

fgets (buf,

sizeof (buf),

stdin);

IE's Role in the Google-China War

By Richard Adhikari AA Text Size
TechNewsWorld

01/15/10 12:25 PM PT

The hack attack on Google that set off the
company's ongoing standoff with China appears to have
come through a zero-day flaw in Microsoft's Internet
Explorer browser. Microsoft has released a security
advisory, and researchers are hard at work studying the
exploit. The attack appears to consist of several files, each a different piece of
malware.

= Print Version
3 E-Mail Article

Computer security companies are scurrying to cope with the fallout from the Internet Explorer
(IE) flaw that led to cyberattacks on Google and its corporate and individual customers.

The zero-day attack that exploited IE is part of a lethal cocktail of malware that is keeping
researchers very busy.

"We're discovering things on an up-to-the-minute basis, and we've seen about a dozen files
dropped on infected PCs so far,” Dmitri Alperovitch, vice president of research at McAfee Labs,
told TechNewsWorld.

The attacks on Google, which appeared to originate in China, have sparked a feud between the
Internet giant and the nation's government over censorship, and it could result in Google
pulling away from its business dealings in the country.

Pointing to the Flaw

The vulnerability in IE is an invalid pointer reference, Microsoft said in security advisory
979352, which it issued on Thursday. Under certain conditions, the invalid Eointer can be

accessed after an ob]ect is deleted, the advisory states. In specially crafted attacks, like the
ones launched against Google and its customers, IE can allow remote execution of code when

the flaw is exploited.

USER-SUPPLIED STRINGS

00

* In these examples, we were providing our own strings

e But they come from users in myriad aways
» Text input
»+ Network packets
» Environment variables

- File input...

WHAT'S THE WORST THAT CAN HAPPEN?

WHAT'S THE WORST THAT CAN HAPPEN?

void func(char *argl)
{
char buffer[4];
strcpy(buffer, argl);
}

buffer

strcpy will let you write as much as you want (til a "\0’)

WHAT'S THE WORST THAT CAN HAPPEN?

void func(char *argl)
{
char buffer[4];
strcpy(buffer, argl);
}
All ours!
buffer

strcpy will let you write as much as you want (til a "\0’)

WHAT'S THE WORST THAT CAN HAPPEN?

void func(char *argl)
{
char buffer[4];
strcpy(buffer, argl);
}
All ours!
buffer

strcpy will let you write as much as you want (til a "\0’)

What could you write to memory to wreak havoc?

FIRST A RECAP: ARGS

#include <stdio.h>

void func(char *argl, int arg2, int arg3)

!
printf(“argl is at %p\n”, &argl);
printf(“arg2 is at %p\n”, &arg2);
printf(”“arg3 is at %p\n”, &arg3);
}

int main()

{
func(”“Hello”, 10, =-3);

return 0;

FIRST A RECAP: ARGS

#include <stdio.h>

void func(char *argl, int arg2, int arg3)

{
printf(“argl is at %p\n”, &argl);
printf(“arg2 is at %p\n”, &arg2);
printf(“arg3 is at %p\n”, &arg3);
}
int main()
{
func(“Hello”, 10, -=3);
return 0;
}

What will happen?

&argl < &arg2 < &arg3? &argl > &arg2 > &arg3?

FIRST A RECAP: LOCALS

#include <stdio.h>

void func()
{
char locl[4];
int loc2;
int loc3;
printf(“locl is at %p\n”, &locl);
printf(“loc2 is at %p\n”, &loc2);
printf(“loc3 is at %p\n”, &loc3);
}

int main()

{

func();
return 0;

FIRST A RECAP: LOCALS

#include <stdio.h>

void func()

{
char locl[4];
int loc2;
int loc3;
printf(“locl is at %p\n”, &locl);
printf(“loc2 is at %p\n”, &loc2);
printf(“loc3 is at %p\n”, &loc3);
}
int main()
{
func();
return 0;
}

What will happen?

&locl < &loc2 < &loc3? &locl > &loc2 > &loc3?

STACK & FUNCTIONS: SUMMARY

00

Calling function (before calling):

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after control
returns to you: e.g., %eip + 2

3.Jump to the function’s address

Called function (when called):

4.Push the old frame pointer onto the stack: push %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %ebp=%esp
6.Push local variables onto the stack; access them as offsets from %ebp

Called function (when returning):

/.Reset the previous stack frame: %esp = %ebp; pop %ebp
8.Jump back to return address: pop %eip

3elp Sebp

0x0

!

code caller's data

0X0~

STACK & FUNCTIONS: SUMMARY

00

Calling function (before calling):

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after control
returns to you: e.g., %eip + 2

3.Jump to the function’s address

Called function (when called):

4.Push the old frame pointer onto the stack: push %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %ebp=%esp
6.Push local variables onto the stack; access them as offsets from %ebp

Called function (when returning):

/.Reset the previous stack frame: %esp = %ebp; pop %ebp
8.Jump back to return address: pop %eip

3elp Sebp

0x0

!

code arg2 | caller’s data

0X0~

STACK & FUNCTIONS: SUMMARY

00

Calling function (before calling):

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after control
returns to you: e.g., %eip + 2

3.Jump to the function’s address

Called function (when called):

4.Push the old frame pointer onto the stack: push %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %ebp=%esp
6.Push local variables onto the stack; access them as offsets from %ebp

Called function (when returning):

/.Reset the previous stack frame: %esp = %ebp; pop %ebp
8.Jump back to return address: pop %eip

3elp Sebp

0x0

!

code argl arg2

0X0~

STACK & FUNCTIONS: SUMMARY

00

Calling function (before calling):

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after control
returns to you: e.g., %eip + 2

3.Jump to the function’s address

Called function (when called):

4.Push the old frame pointer onto the stack: push %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %ebp=%esp
6.Push local variables onto the stack; access them as offsets from %ebp

Called function (when returning):

/.Reset the previous stack frame: %esp = %ebp; pop %ebp
8.Jump back to return address: pop %eip

3elp Sebp

0x0

!

code teip+.. argl arg2 | caller’s data

0X0~

STACK & FUNCTIONS: SUMMARY

00

Calling function (before calling):

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after control
returns to you: e.g., %eip + 2

3.Jump to the function’s address

Called function (when called):

4.Push the old frame pointer onto the stack: push %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %ebp=%esp
6.Push local variables onto the stack; access them as offsets from %ebp

Called function (when returning):

/.Reset the previous stack frame: %esp = %ebp; pop %ebp
8.Jump back to return address: pop %eip

3elp Sebp

code teip+.. argl arg2 | caller’s data

) I

0x0

0X0~

STACK & FUNCTIONS: SUMMARY

00

Calling function (before calling):

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after control
returns to you: e.g., %eip + 2

3.Jump to the function’s address

Called function (when called):

4.Push the old frame pointer onto the stack: push %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %ebp=%esp
6.Push local variables onto the stack; access them as offsets from %ebp

Called function (when returning):

/.Reset the previous stack frame: %esp = %ebp; pop %ebp
8.Jump back to return address: pop %eip

gelp Sebp

l

0x0

code teip+.. argl arg2 | caller’s data

) I

0X0~

STACK & FUNCTIONS: SUMMARY

00

Calling function (before calling):

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after control
returns to you: e.g., %eip + 2

3.Jump to the function’s address

Called function (when called):

4.Push the old frame pointer onto the stack: push %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %ebp=%esp
6.Push local variables onto the stack; access them as offsets from %ebp

Called function (when returning):

/.Reset the previous stack frame: %esp = %ebp; pop %ebp
8.Jump back to return address: pop %eip

gelp Sebp

l

0x0

code %ebp s%eip+. argl arg2 | caller’s data

) I

0X0~

0x0

STACK & FUNCTIONS: SUMMARY

00

Calling function (before calling):

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after control
returns to you: e.g., %eip + 2

3.Jump to the function’s address

Called function (when called):

4.Push the old frame pointer onto the stack: push %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %ebp=%esp
6.Push local variables onto the stack; access them as offsets from %ebp

Called function (when returning):

/.Reset the previous stack frame: %esp = %ebp; pop %ebp
8.Jump back to return address: pop %eip

gelp Sebp

caller's data

code 3ebp seipt. argl arg2

5 —

0X0~

0x0

STACK & FUNCTIONS: SUMMARY

00

Calling function (before calling):

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after control
returns to you: e.g., %eip + 2

3.Jump to the function’s address

Called function (when called):

4.Push the old frame pointer onto the stack: push %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %ebp=%esp
6.Push local variables onto the stack; access them as offsets from %ebp

Called function (when returning):

/.Reset the previous stack frame: %esp = %ebp; pop %ebp
8.Jump back to return address: pop %eip

3elp sebp

! !

0X0~

code %ebp teip+. argl arg2 | caller's data
* | l

0x0

STACK & FUNCTIONS: SUMMARY

00

Calling function (before calling):

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after control
returns to you: e.g., %eip + 2

3.Jump to the function’s address

Called function (when called):

4.Push the old frame pointer onto the stack: push %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %ebp=%esp
6.Push local variables onto the stack; access them as offsets from %ebp

Called function (when returning):

/.Reset the previous stack frame: %esp = %ebp; pop %ebp
8.Jump back to return address: pop %eip

3elp sebp

! !

0X0~

code loc1 %ebp %eip+. argl arg2 | caller’s data
* | l

0x0

STACK & FUNCTIONS: SUMMARY

00

Calling function (before calling):

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after control
returns to you: e.g., %eip + 2

3.Jump to the function’s address

Called function (when called):

4.Push the old frame pointer onto the stack: push %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %ebp=%esp
6.Push local variables onto the stack; access them as offsets from %ebp

Called function (when returning):

/.Reset the previous stack frame: %esp = %ebp; pop %ebp
8.Jump back to return address: pop %eip

3elp sebp

! !

0X0~

code loc2 loc1 %ebp teipt. argl arg2 | caller's data
* | l

0x0

STACK & FUNCTIONS: SUMMARY

00

Calling function (before calling):

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after control
returns to you: e.g., %eip + 2

3.Jump to the function’s address

Called function (when called):

4.Push the old frame pointer onto the stack: push %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %ebp=%esp
6.Push local variables onto the stack; access them as offsets from %ebp

Called function (when returning):

/.Reset the previous stack frame: %esp = %ebp; pop %ebp
8.Jump back to return address: pop %eip

seip sebp

caller's data

code loc2 loc1 %ebp steip+. argl arg2

5 —

0X0~

0x0

STACK & FUNCTIONS: SUMMARY

00

Calling function (before calling):

1.Push arguments onto the stack (in reverse)

2.Push the return address, i.e., the address of the instruction you want run after control
returns to you: e.g., %eip + 2

3.Jump to the function’s address

Called function (when called):

4.Push the old frame pointer onto the stack: push %ebp
5.Set frame pointer %ebp to where the end of the stack is right now: %ebp=%esp
6.Push local variables onto the stack; access them as offsets from %ebp

Called function (when returning):

/.Reset the previous stack frame: %esp = %ebp; pop %ebp
8.Jump back to return address: pop %eip

seip sebp

caller's data

code loc2 loc1 %ebp steip+. argl arg2

5 —

0X0~

GDB: YOUR NEW BEST FRIEND

000000000000000000000000000000000000

run <input>

print <var>
(or just "p <var>")

b <function>

II

00

Run the program with input as the
command-line arguments

Print the value of variable var
(Can also do some operations: p &x)

Set a breakpoint at function

step through execution (into calls)
continue execution (no more stepping)

GDB: YOUR NEW BEST FRIEND

00

info frame Show info about the current frame
(or just “i £") (prev. frame, locals/args, %ebp/%eip)
info reg Show info about registers

(orjust “i r") | (%ebp, %eip, %esp, etc.)

Examine <n> bytes of memory
x/<n> <addr> .
starting at address <addr>

BUFFER OVERFLOW

char loc1[4];

BUFFER OVERFLOW

char loc1[4

e e e e [

gets (locl);
strcpy(locl, <user 1input>);
memcpy (locl, <user input>);

elc.

BUFFER OVERFLOW

char loc1[4];

Input writes from low to high addresses

gets (locl);
strcpy(locl, <user 1input>);
memcpy (locl, <user input>);

elc.

BUFFER OVERFLOW

char loc1[4

e e e e R [

Input writes from low to high addresses

gets (locl);
strcpy(locl, <user 1input>);
memcpy (locl, <user input>);

elc.

BUFFER OVERFLOW

Can over-write other data (“AuthMe!")

char loc1[4

T e e e e)

Input writes from low to high addresses

gets (locl);
strcpy(locl, <user 1input>);
memcpy (locl, <user input>);

elc.

BUFFER OVERFLOW

Can over-write other data (“AuthMe!")

Can over-write the program’s control flow (%eip)

char loc1[4

T e e e)

Input writes from low to high addresses

gets (locl);
strcpy(locl, <user 1input>);
memcpy (locl, <user input>);

elc.

CODE
INJECTION

HIGH-LEVEL IDEA

void func(char *argl)
{
char buffer[4];
sprintf (buffer, argl);
}

|

buffer

HIGH-LEVEL IDEA

void func(char *argl)
{
char buffer[4];
sprintf (buffer, argl);
}

- 00 00 00 00| $ebp $eip sargl - ECEUEEENN

buffer

(1) Load our own code into memory

HIGH-LEVEL IDEA

void func(char *argl)

{
char buffer[4];

sprintf (buffer, argl);

Selp

- 00 00 00 00| $ebp $eip sargl - ECEUEEENN

buffer

(1) Load our own code into memory

(2) Somehow get %eip to point to it

HIGH-LEVEL IDEA

void func(char *argl)
{
char buffer[4];
sprintf (buffer, argl);
}

Selp

I T TN Haxcor 03

buffer

(1) Load our own code into memory

(2) Somehow get %eip to point to it

HIGH-LEVEL IDEA

void func(char *argl)
{
char buffer[4];
sprintf (buffer, argl);
}

Selp

I T TN Haxcor 03

buffer

(1) Load our own code into memory

(2) Somehow get %eip to point to it

THIS IS NONTRIVIAL

 Pulling off this attack requires getting a few things

really right (and some things sorta right)

* Think about what is tricky about the attack

» The key to defending it will be to make the hard parts
really hard

CHALLENGE 1: LOADING CODE INTO MEMORY

00

|t must be the machine code instructions
(i.e., already compiled and ready to run)

e \We have to be careful in how we construct it:

» |t can't contain any all-zero bytes
Otherwise, sprintf / gets / scanf / ... will stop copying

How could you write assembly to never contain a full zero byte?

» |t can’t make use of the loader (we're injecting)

» |t can't use the stack (we're going to smash it)

WHAT KIND OF CODE WOULD WE WANT TO RUN?

00

» Goal: full-purpose shell

« The code to launch a shell is called “shell code”

» Itis nontrivial to it in a way that works as injected code

- No zeroes, can’t use the stack, no loader dependence

+ There are many out there

- And competitions to see who can write the smallest

» Goal: privilege escalation

- |deally, they go from guest (or non-user) to root

SHELLCODE

#include <stdio.h>
int main() {
char #*name[2];
name[0] = “/bin/sh”;
name[1l] = NULL;
execve(name[0], name, NULL);

SHELLCODE

#include <stdio.h>
int main() {
char #*name[2];
name[0] = “/bin/sh”;
name[1l] = NULL;
execve(name[0], name, NULL);

Xorl %eax, %eax
pushl %eax

pushl $0x68732f2f
pushl $0x6e69622f
movl 3esp, 3ebx
pushl %eax

Assembly

SHELLCODE

#include <stdio.h>
int main() {
char #*name[2];
name[0] = “/bin/sh”;
name[1l] = NULL;
execve(name[0], name, NULL);

Xorl %eax, %eax
pushl %eax

pushl $0x68732f2f
pushl $0x6e69622f
movl 3esp, 3ebx
pushl %eax

Assembly

SHELLCODE

#include <stdio.h>
int main() {
char #*name[2];
name[0] = “/bin/sh”;
name[1l] = NULL;
execve(name[0], name, NULL);

}
xorl %eax, %eax “\x31\xc0” Z
> |pushl %eax “\x50" Q
e 0
O |pushl $0x68732f2f “\x68""//sh" | 3,
qg’ pushl $0x6e69622f “\x68"" /bin" |3
A |movl %esp, %ebx #\x89\xe3" A
< |pushl %eax “\x50" 9
®

SHELLCODE

#include <stdio.h>
int main() {
char #*name[2];
name[0] = “/bin/sh”;
name[1l] = NULL;
execve(name[0], name, NULL);

}

xorl %eax, %eax “\x31\xc0"”
> |[pushl %eax “\x50"
O |pushl $0x68732f2f “\x68""//sh"
GE, pushl $0x6e69622f “\x68""/bin"
A |movl %esp, $ebx “\x89\xe3"
< |pushl %eax “\x50"

(Part of)

your
Input

9pOd dulyde||

PRIVILEGE ESCALATION

* More on Unix permissions later, but for now...

e Recall that each file has:
Permissions: read / write / execute

For each of: owner / group / everyone else

* Permissions are defined over userid’s and groupid's
Every user has a userid
root’s userid is O

» Consider a service like passwa

« Owned by root (and needs to do root-y things)
But you want any user to be able to execute it

REAL VS EFFECTIVE USERID

* (Real) Userid = the user who ran the process

 Effective userid = what is used to determine what
permissions/access the process has

» Consider passwd: root owns it, but users can run it
getuid() will return who ran it (real userid)

- seteuid(0) to set the effective userid to root

It's allowed to because root is the owner

« What is the potential attack?

REAL VS EFFECTIVE USERID

* (Real) Userid = the user who ran the process

 Effective userid = what is used to determine what
permissions/access the process has

» Consider passwd: root owns it, but users can run it
- getuid() will return who ran it (real userid)
- seteuid(0) to set the effective userid to root

It's allowed to because root is the owner

« What is the potential attack?

If you can get a root-owned process to run
setuid(0)/seteuid(0), then you get root permissions

CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

00

* All we can do is write to memory from buffer onward
» With this alone we want to get it to jump to our code

+ We have to use whatever code is already running

-+ 00 00 00 00 %ebp %elip &argl ..

buffer

Thoughts?

CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

* All we can do is write to memory from buffer onward
» With this alone we want to get it to jump to our code

+ We have to use whatever code is already running

B T |

buffer

Thoughts?

CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

* All we can do is write to memory from buffer onward
» With this alone we want to get it to jump to our code

+ We have to use whatever code is already running

<[00 00 00 00 sebp seip sargl - IETRCTRCININ

buffer

Thoughts?

CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

* All we can do is write to memory from buffer onward
» With this alone we want to get it to jump to our code

+ We have to use whatever code is already running

Selp

<[00 00 00 00 sebp seip sargl - IETRCTRCININ

buffer

Thoughts?

CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

* All we can do is write to memory from buffer onward
» With this alone we want to get it to jump to our code

+ We have to use whatever code is already running

$elp

St oo 00w vere seip carer [N

buffer

Thoughts?

CHALLENGE 2: GETTING OUR INJECTED CODE TO RUN

* All we can do is write to memory from buffer onward
» With this alone we want to get it to jump to our code

+ We have to use whatever code is already running

Selp

St oo 00w vere seip carer R

buffer

Thoughts?

STACK & FUNCTIONS: SUMMARY

HIJACKING THE SAVED ZEIP

Selp sebp

HIJACKING THE SAVED ZEIP

Selp sebp

HIJACKING THE SAVED ZEIP

sebp Selp

HIJACKING THE SAVED ZEIP

sebp Selp

buffer

But how do we know the address?

HIJACKING THE SAVED ZEIP

What if we are wrong?

Selp sebp

buffer

HIJACKING THE SAVED ZEIP

What if we are wrong?

Selp sebp

buffer

HIJACKING THE SAVED ZEIP

What if we are wrong?

sebp Telp

buffer

HIJACKING THE SAVED ZEIP

What if we are wrong?

3ebp selp

buffer
Oxbff

This is most likely data,
so the CPU will panic
(Invalid Instruction)

CHALLENGE 3: FINDING THE RETURN ADDRESS

CHALLENGE 3: FINDING THE RETURN ADDRESS

e |f we don’t have access to the code, we don’t know how
far the bufter is from the saved %ebp

CHALLENGE 3: FINDING THE RETURN ADDRESS

e |f we don’t have access to the code, we don’t know how
far the bufter is from the saved %ebp

» One approach: just try a lot of different values!

CHALLENGE 3: FINDING THE RETURN ADDRESS

00

e |f we don’t have access to the code, we don’t know how
far the bufter is from the saved %ebp

* One approach: just try a lot of different values!

» Worst case scenario: it's a 32 (or 64) bit memory space,
which means 232 (2%%) possible answers

CHALLENGE 3: FINDING THE RETURN ADDRESS

00

e |f we don't have access to the code, we don’t know how
far the bufter is from the saved %ebp

* One approach: just try a lot of different values!

» Worst case scenario: it's a 32 (or 64) bit memory space,
which means 232 (2%%) possible answers

e But without address randomization:

+ The stack always starts from the same, fixed address

» The stack will grow, but usually it doesn’t grow very deeply
(unless the code is heavily recursive)

IMPROVING OUR CHANCES: NOP SLEDS

nop is a single-byte instruction
(just moves to the next instruction)

Selp Sebp

buffer

IMPROVING OUR CHANCES: NOP SLEDS

nop is a single-byte instruction
(just moves to the next instruction)

$elp Sebp

buffer

IMPROVING OUR CHANCES: NOP SLEDS

nop is a single-byte instruction
(just moves to the next instruction)

Jumping anywhere

o> a1 o .
°€1P sebp here will work

buffer

IMPROVING OUR CHANCES: NOP SLEDS

nop is a single-byte instruction
(just moves to the next instruction)

Jumping anywhere

S A q o .
°€1P sebp here will work

¢ o Oxbdf lnop nop nop .. ‘ \x0f \x3c \x2f ...

buffer

IMPROVING OUR CHANCES: NOP SLEDS

nop is a single-byte instruction
(just moves to the next instruction)

Jumping anywhere

S A q o .
°€1P sebp here will work

buffer

Now we improve our chances
of guessing by a factor of #nops

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

But it has to be something;
we have to start writing wherever
the input to gets/etc. begins.

!

seip padding

buffer

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

But it has to be something;
we have to start writing wherever
the input to gets/etc. begins.

. good
3elp padding guess

buffer

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

But it has to be something;
we have to start writing wherever
the input to gets/etc. begins.

!

padding good

3elp guess

‘[Oxbdf | nop nop nop ..

buffer

nop sled

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

But it has to be something;
we have to start writing wherever
the input to gets/etc. begins.

!

. ood
: addin J
selp P J guess

buffer

nop sled malicious code

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

good
guess %elp

padding

nop sled malicious code

BUFFER OVERFLOWS: PUTTING IT ALL TOGETHER

good
guess Telp

padding

‘[()def nop nop nop ..| \x0f \x3c \x2f ...

buffer

nop sled malicious code

