
Web security
With material from Dave Levin, Mike Hicks, Lujo Bauer



Previously
• Attack and defense at host machines 

• Applications written in C and C++ 
• Violations of memory safety 

• Web security now 
• Attacking web services 
• Problems: Confusion of code/data; untrusted input



Web security topics

• Web basics (today) 

• SQL injection, defenses (today) 

• Stateful web and session problems (Thursday)  

• Dynamic web and XSS (Thursday)



Web Basics



The web, basically

Browser Web server

Database

Client Server

(Private) 
Data

DB is a separate entity,
logically (and often physically)

(Much) user data is
part of the browser



Interacting with web servers

http://www.umiacs.umd.edu/~mmazurek/index.html

Resources which are identified by a URL
(Universal Resource Locator)

Protocol
ftp
https
tor

Hostname/server
Translated to an IP address by DNS 
(e.g., 128.8.127.3)

Path to a resource
Here, the file index.html is static content 
i.e.,  a fixed file returned by the server



Interacting with web servers
Resources which are identified by a URL

(Universal Resource Locator)

Path to a resource
http://facebook.com/delete.php

Here, the file delete.php is dynamic content 
i.e., the server generates the content on the fly

?f=joe123&w=16
Arguments



Basic structure of web traffic

Browser Web server

Client Server

Database(Private) 
Data

• HyperText Transfer Protocol (HTTP) 
• An “application-layer” protocol for exchanging data

HTTP



Basic structure of web traffic

Browser Web server

Client Server
HTTP Request

User clicks

• Requests contain: 
• The URL of the resource the client wishes to obtain 
• Headers describing what the browser can do 

• Request types can be GET or POST 
• GET: all data is in the URL itself  
• POST: includes the data as separate fields



HTTP GET requests
https://krebsonsecurity.com

User-Agent is typically a browser 
but it can be wget, JDK, etc.



Referrer URL: site from which 
this request was issued.



HTTP POST requests
Posting on Piazza

Explicitly includes data as a part of the request’s content

Implicitly includes data  
as a part of the URL



Basic structure of web traffic

Browser Web server

Client ServerHTTP Request

User clicks

• Responses contain: 
• Status code 
• Headers describing what the server provides 
• Data 
• Cookies (much more on these later) 

• Represent state the server would like the browser to store

HTTP Response



HTTP responses

<html> …… </html>

H
ea

de
rs

Data

HTTP
version

Status 
code

Reason



SQL injection



http://xkcd.com/327/



Server-side data

Browser Web server

Database

Client Server

(Private) 
Data

Long-lived state, stored 
in a separate database

Need to protect this state from 
illicit access and tampering



Databases
• Provide data storage & manipulation 

• Database designer organizes data into tables 

• Programmers query the database 

• Database Management Systems (DBMSes) provide 
• semantics for how to organize data 
• transactions for manipulating data sanely 
• a language for creating & querying data 

• and APIs to interoperate with other languages 
• management via users & permissions



SQL (Standard Query Language)

Users
Name Gender Age Email Password
Connie F 12 connie@bc.com sw0rdg1rl
Steven M 14 steven@bc.com c00kieC4t
Greg M 34 greg@bc.com i<3ros3!

Vidalia M 35 vidalia@bc.com sc&On!0N
Pearl F 10000 pearl@bc.com ziog9gga

Table
Table name

Column

Row
(Record)

SELECT Age FROM Users WHERE Name=‘Greg’; 34
UPDATE Users SET email=‘mr.uni@bc.com’  
   WHERE Age=34; -- this is a comment

mr.uni@bc.com

INSERT INTO Users Values(‘Pearl’, ‘F’, ...);
DROP TABLE Users;



Server-side code

$result = mysql_query(“select * from Users
       where(name=‘$user’ and password=‘$pass’);”);

Website

“Login code” (PHP)

Suppose you successfully log in as $user  
if this returns any results

How could you exploit this?



SQL injection

$result = mysql_query(“select * from Users
       where(name=‘$user’ and password=‘$pass’);”);

frank’ OR 1=1); -- 

$result = mysql_query(“select * from Users
       where(name=‘frank’ OR 1=1); --

and password=‘whocares’);”);

Login successful!
Problem: Data and code mixed up together



SQL injection: Worse

$result = mysql_query(“select * from Users
       where(name=‘$user’ and password=‘$pass’);”);

frank’ OR 1=1); DROP TABLE Users; -- 

$result = mysql_query(“select * from Users
       where(name=‘frank’ OR 1=1);
       DROP TABLE Users; --

and password=‘whocares’);”);

Can chain together statements with semicolon: 
STATEMENT 1 ; STATEMENT 2



SQL injection: Even worse

$result = mysql_query(“select * from Users
       where(name=‘$user’ and password=‘$pass’);”);

’); EXEC cmdshell ‘net user badguy backdoor / ADD’; -- 

$result = mysql_query(“select * from Users
       where(name=‘’);
       EXEC cmdshell ‘net user badguy backdoor / ADD’; --

and password=‘whocares’);”);



http://xkcd.com/327/



SQL injection attacks are common

0

5

10

15

20

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

% of vulnerabilities that 
are SQL injection

http://web.nvd.nist.gov/view/vuln/statistics





SQL injection 
countermeasures



The underlying issue

• This one string combines the code and the data 
• Similar to buffer overflows

$result = mysql_query(“select * from Users
       where(name=‘$user’ and password=‘$pass’);”);

When the boundary between code and data blurs,
we open ourselves up to vulnerabilities



The underlying issue
$result = mysql_query(“select * from Users
       where(name=‘$user’ and password=‘$pass’);”);

select / from / where

* Users and

=

name $user

=

passwor $pass$user

Should be 
data, not code



Prevention: Input validation

• We require input of a certain form, but we cannot 
guarantee it has that form, so we must validate it
• Just like we do to avoid buffer overflows 

• Making input trustworthy 
• Check it has the expected form, reject it if not 
• Sanitize by modifying it or using it such that the 

result is correctly formed



Sanitization: Blacklisting

• Delete the characters you don’t want 

• Downside: “Lupita Nyong’o” 
• You want these characters sometimes! 
• How do you know if/when the characters are bad? 

• Downside: How to know you’ve ID’d all bad chars?

’ --;



Sanitization: Escaping
• Replace problematic characters with safe ones 

• Change ’ to \’
• Change ; to \;
• Change - to \-
• Change \ to \\ 

• Hard by hand, there are many libs & methods 
• magic_quotes_gpc = On

• mysql_real_escape_string()

• Downside: Sometimes you want these in your SQL! 
• And escaping still may not be enough



Checking: Whitelisting
• Check that the user input is known to be safe

• E.g., integer within the right range 

• Rationale: Given invalid input, safer to reject than fix 
• “Fixes” may result in wrong output, or vulnerabilities 
• Principle of fail-safe defaults 

• Downside: Hard for rich input! 
• How to whitelist usernames? First names?



Can we do better?

Sanitization via escaping, whitelisting, 
blacklisting is HARD.



Sanitization: Prepared statements
• Treat user data according to its type 

• Decouple the code and the data

$db = new mysql(“localhost”, “user”, “pass”, “DB”);

$statement = $db->prepare(“select * from Users
where(name=? and password=?);”);

$statement->bind_param(“ss”, $user, $pass);
$statement->execute();

$result = mysql_query(“select * from Users
       where(name=‘$user’ and password=‘$pass’);”);

Bind variables

Bind variables are typed

Decoupling lets us compile now, before binding the data



$statement =              “select * from Users
   where(name=‘$user’ and password=‘$pass’);”;

Using prepared statements
$statement = $db->prepare(“select * from Users

where(name=?       and password=?);”);
$stmt->bind_param("ss", $user, $pass);

select / from / where

* Users and

=

name ?

=

passwor ?

Binding is only applied to the leaves, 
so the structure of the tree is fixed

$user $passfrank’ 
OR 1=1);
 -- 



Additional mitigation
• For defense in depth, also try to mitigate any attack 

• But should always do input validation in any case! 

• Limit privileges; reduces power of exploitation 
• Limit commands and/or tables a user can access 
• e.g., allow SELECT on Orders but not Creditcards 

• Encrypt sensitive data; less useful if stolen 
• May not need to encrypt Orders table 
• But certainly encrypt creditcards.cc_numbers


