Web security

With material from Dave Levin, Mike Hicks, Lujo Bauer

Previously

e Attack and defense at host machines
* Applications written in C and C++
* Violations of memory safety

* Web security now
* Attacking web services
* Problems: Confusion of code/data; untrusted input

Web security topics

Web basics (today)
SQL injection, defenses (today)
Stateful web and session problems (Thursday)

Dynamic web and XSS (Thursday)

Web Basics

T'he web, basically

Client Server

4 1 d 1
Browser SfessssmsssssssssmEEEEsmEnEnn . Web server

I U > I

"Oota.
Data
N J N J

(Much) user data is DB is a separate entity,
part of the browser logically (and often physically)

Interacting with web servers

Resources which are identified by a URL

(Universal Resource Locator)

[http} //www.umiacs.umd.edu){~mmazurek/index.html |

Protocol Hostname/server

ftp Translated to an IP address by DNS
https (e.g., 128.8.127.3)

tor

Path to a resource

Here, the file index.ntm1 IS Static content
l.e., afixed file returned by the server

Interacting with web servers

Resources which are identified by a URL

(Universal Resource Locator)

Path to a resource
http://facebook.com{delete.phpk&=joe123&w=16]
Arguments

Here, the file delete.php is dynamic content
l.e., the server generates the content on the fly

Basic structure of web traffic

Client Server

d A d B
Browser A n s EmEE R s R R R R E R b Web server

! !

Data
N J N J

 HyperText Transfer Protocol (HTTP)
- An “application-layer” protocol for exchanging data

Basic structure of web traffic

Client Server
HTTP Request

Web server

Browser

User clicks

* Requests contain:
- The URL of the resource the client wishes to obtain
- Headers describing what the browser can do

* Request types can be GET or POST
- GET: all data is in the URL itself
- POST: includes the data as separate fields

HTTP GET requests

https:/krebsonsecurity.com

HTTP Headers
https://krebsonsecurity.com/

GET/HTTP/1.1

Host: krebsonsecurity.com

User—Agent:jMoziIIa/S.O (Macintosh; Intel Mac OS X 10.10; rv:40.0) Gecko/20100101 Firefox/40.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate
DNT: 1
Connection: keep-alive

User-Agent is typically a browser
but it can be wget, JDK, etc.

According to security firm Shavlik, the patches that
address flaws which have already been publicly
disclosed include a large Internet Explorer (IE)
update that corrects 17 flaws and a fix for
Microsoft Edge, Redmond’s flagship replacement

browser for IE; both address Jamong others.
H

A critical fix for a Windows graphics component
addresses flaws that previously showed up in two
public disclosures, one of which Shavlik says is
currently being exploited in the wild
(CVE-2015-2546). The 100th patch that Microsoft
has issued so far this year — a salve for Windows

HTTP Headers
https://web.nvd.nist.gov/view/vuln/detail?vulnld=CVE-2015-1421

GET /view/vuln/detail?vulnld=CVE-2015-1421 HTTP/1.1

Host: web.nvd.nist.gov

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:40.0) Gecko/20100101 Firefox/40.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate

DNT: 1 Referrer URL.: site from which

ererer. S. rebsonsecurity.com n =
Geteres e losbeonzecuiie®) this request was issued.

HTTP POST requests

Posting on Piazza

HTTP Headers

https://piazza.com/logic/api?method=content.create&aid=hrteve7t83et

POST /Iogic/api?method=content.create@aid=hrteve7t83et HTTP/1. 1)
Host: piazza.com
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rnv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11
Accept: application/json, text/javascript, */*; q=0.01
Accept-Language: en-us,en;q=0.5 . ' '
Accept-Encoding: gzip,deflate | p | tly | d d t
Accept-Charset: 1SO-8859-1,utf-8;q=0.7,*,q=0.7 m I C I l n C U eS a a
Keep-Alive: 115

Connection: keep-alive 'I: f th U R |_
Content-Type: application/x-www-form-urlencoded; charset=UTF-8 aS a p ar O e

X-Requested-With: XMLHttpRequest

Referer: https://piazza.com/class

Content-Length: 339

Cookie: piazza_session="DFwWUCEFIGVEGWWHL])yuCvHIGtHKECCKL.5%25X+X+Ux%255M5%22%215%3F5%26X%26%26%7C%22%21r...
Pragma: no-cache

Caghe-Control: no-cache

({"method":"content.create",“params":{"cid":"hrpng9q2nndos","subject":"<p>|nteresting.. perhaps it has to do with a change to the)

Explicitly includes data as a part of the request’s content

Basic structure of web traffic

Client LT Request Server
Web server
HTTP Response

User clicks

 Responses contain:
 Status code

- Headers describing what the server provides
- Data

- Cookies (much more on these later)
- Represent state the server would like the browser to store

H I TP responses

HTTP Status
version code

Reason
"

Cache-Control: private, no-store, must-revalidate

Content-Length: 50567

Content-Type: text/html; charset=utf-8

Server: Microsoft-11S/7.5

Set-Cookie: CMSPreferredCulture=en-US; path=/; HttpOnly; Secure
Set-Cookie: ASP.NET_Sessionld=4|20j4nthxmvjs1waletxlqa; path=/; secure; HitpOnly
Set-Cookie: CMSCurrentTheme=NVDLegacy; path=/; HttpOnly; Secure
X-Frame-Options: SAMEORIGIN

x-ua-compatible: IE=Edge

X-AspNet-Version: 4.0.30319

X-Powered-By: ASPNET, ASP.NET

Headers

L

SQL injection

HI, THIS 1S

YOUR SON'S SCHOOL.

WE'RE HAVING SOME
COMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN AWAY /

S

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-~ 7

!

~OH.YES LITNLE
ROBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

¢

AND I HOPE
-~ YOUVE LEARNED
+ TOSANMIZE YOUR
DATARASE INPUTS,

http://xkcd.com/327/

Server-side data

Client

d 1
Browser -

!

(Private)

Data

Server

d 1)
............................... o Web server

Long-lived state, storead
IN a separate database

Need to protect this state from
llicit access and tampering

Databases

Provide data storage & manipulation
Database designer organizes data into tables
Programmers query the database

Database Management Systems (DBMSes) provide
e semantics for how to organize data
* transactions for manipulating data sanely

* a language for creating & querying data
* and APIs to interoperate with other languages

* management via users & permissions

SQL (Standard Query Language)

Table
TapteTame
(— Users \
Name Gender Age Email Password
Connie F 12 connie@bc.com swOrdglrl
. Row
Steven M 14 steven@bc.com c00kieC4t }
Greg M 34 mr.uni@bc.com i<3ros3! (Record)
Vidalia M 35 vidalia@bc.com sc&On!ON
Column

SELECT Age FROM Users WHERE Name=‘Greg’; 34

UPDATE Users SET email=‘mr.uni@bc.com’
WHERE Age=34; -- this is a comment

INSERT INTO Users Values(’'Pearl’, ‘F’', ...);
DROP TABLE Users;

Server-side code

Website
Usemame:l Password: I Log me on automatically each visit _ Log in |

“Login code” (PHP)

Sresult = mysqgl query(“select * from Users
where (name=’'Suser’ and password=‘S$Spass’);"”);

Suppose you successfully log in as $user
If this returns any results

How could you exploit this?

SQVL injection

0 Ton
.......
. "y
......
““““

frank’ OR 1=lj; -=

Sresult = mysqgl query(“select * from Users
where (name=’'Suser’ and password=‘S$Spass’);"”);

Sresult = mysqgl query(“select * from Users
where(name=‘'frank’ OR 1=1); --
and password=‘whocares’);");

Login successful!
Problem: Data and code mixed up together

SQVL injection: Worse

------------------...-....--------- LT i
.
nun
LR LLLLT T

frank’ OR 1=1); DROP TABLE Users; --

Sresult = mysqgl query(“select * from Users
where (name=’'Suser’ and password=‘S$Spass’);"”);

Sresult = mysqgl query(“select * from Users
where(name=‘'frank’ OR 1=1);
DROP TABLE Users; --
and password=‘whocares’);"”);

Can chain together statements with semicolon:
STATEMENT 1 ; STATEMENT 2

SQL injection: Even worse

Sresult = mysqgl query(“select * from Users
where (name=’'Suser’ and password=‘S$Spass’);"”);

Sresult = mysqgl query(“select * from Users
where(name="'");
EXEC cmdshell ‘net user badguy backdoor / ADD’'; --
and password=‘whocares’);"”);

HI, THIS 1S

YOUR SON'S SCHOOL.

WE'RE HAVING SOME
COMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN AWAY /

S

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-~ 7

!

~OH.YES LITNLE
ROBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

¢

AND I HOPE
-~ YOUVE LEARNED
+ TOSANMIZE YOUR
DATARASE INPUTS,

http://xkcd.com/327/

SQVL injection attacks are common

L
% of vulnerabilitiesthat a @ @@@=
are SQL injection
10 e B
B s ol e I --
N

http://web.nvd.nist.gov/view/vuln/statistics

SQL injection
countermeasures

The underlying issue

§$result = mysqgl query(“select * from Users :
: where (name=‘S$user’ and password=‘$pass’);"”);|

* This one string combines th@e and the d@
* Similar to buffer overflows

When the boundary between code and data blurs,
we open ourselves up to vulnerabilities

The underlying issue

§$result = mysqgl query(“select * from Users 5
’ where (name=‘S$user’ and password=‘$pass’);"”);|

select / from / where

Should be
data, not code

passwor

Prevention: Input validation

e We require input of a certain form, but we cannot
guarantee it has that form, so we must validate it

e Just like we do to avoid buffer overflows

 Making input trustworthy
* Check it has the expected form, reject it if not

e Sanitize by modifying it or using it such that the
result is correctly formed

Sanitization: Blacklisting

- Delete the characters you don't want

« Downside: “Lupita Nyong’o’
e You want these characters sometimes!
 How do you know if/when the characters are bad?

* Downside: How to know you’ve |ID’'d all bad chars?

Sanitization: Escaping

- Replace problematic characters with safe ones
« Change " to \"
« Change ; to \;
« Change -to \-
 Change \ to \\

e Hard by hand, there are many libs & methods
e magic _gquotes gpc = On

* mysql real escape string()

 Downside: Sometimes you want these in your SQL!
* And escaping still may not be enough

Checking: Whitelisting

-+ Check that the user input is known to be safe
 E.g., Integer within the right range

* Rationale: Given invalid input, safer to reject than fix

* “Fixes” may result in wrong output, or vulnerabillities
e Principle of fail-safe defaults

* Downside: Hard for rich input!

e How to whitelist usernames? First names”?

Sanitization via escaping, whitelisting,
blacklisting is HARD.

Can we do better?

Sanitization: Prepared statements

e [reat user data according to its type
 Decouple the code and the data

ESresult = mysqgl query(“select * from Users :
where (name=‘S$user’ and password=‘$pass’);"”);|

$db = new mysqgl(“localhost”, *“user”, *“pass”, “DB”);

Sstatement = Sdb->prepare(“select * from Users

where(name=? and password=?);"); B|nd Variables

$Sstatement->bind param(“ss”, Suser, S$pass);

Sstatement->execute(); Bind variables are typed

Decoupling lets us compile now, before binding the data

Using prepared statements

$statement = Sdb->prepare(“select * from Users
' where (name=? and password=?);");
$stmt >bind param("ss", Suser, $pass);

select / from / where

passwor

Binding is only applied to the leaves,
so the structure of the tree is fixed

Additional mitigation

 For defense in depth, also try to mitigate any attack
« But should always do input validation in any case!

* Limit privileges; reduces power of exploitation
e Limit commands and/or tables a user can access
e e.g., allow SELECT on Orders but not Creditcards

* Encrypt sensitive data; less useful if stolen
 May not need to encrypt Orders table

e But certainly encrypt creditcards.cc_numbers

