
Designing
and Building

Secure
Software

With material from Dave Levin, Mike Hicks, Adam Shostack

Making secure software

• Flawed approach: Design and build software, ignore
security at first
• Add security once the functional requirements are satisfied

• Better approach: Build security in from the start
• Incorporate security-minded thinking into all phases of the

development process

Software vs. Hardware
• System design contains software and hardware

• Mostly, we are focusing on the software

• Software is malleable and easily changed
• Advantageous to core functionality
• Harmful to security (and performance)

• Hardware is fast, but hard to change
• Disadvantageous to evolution
• Advantage to security

• Can’t be exploited easily, or changed by an attack

Note

Development process
• Many development processes; four common phases:

• Requirements
• Design
• Implementation
• Testing/assurance
• Apply to: whole project, individual components, iterations

• Where does security engineering fit in?
• All phases!

Security engineering

• Requirements
• Design
• Implementation
• Testing/assurance

Security Requirements
Abuse Cases

Code Review (with tools)

Penetration Testing

Security-oriented Design

Risk-based Security Tests

Threat Modeling

Phases

Activities

Security Requirements,
Abuse Cases

Requirements Security Requirements
Abuse Cases

Security Requirements
• Software requirements: typically about what software should

do

• We also want security requirements
• Security-related goals or policies

• Example: One user’s bank account balance should not
be learned by, or modified by, another user (unless
authorized)

• Mechanisms for enforcing them
• Example: Users identify themselves using passwords,
passwords are “strong,” password database only
accessible to login program.

Typical Kinds of Requirements
• Policies

• Confidentiality (and Privacy and Anonymity)
• Integrity
• Availability

• Supporting mechanisms
• Authentication
• Authorization
• Auditability

Confidentiality (and privacy)
• Definition: Sensitive information not leaked unauthorized

• Called privacy for individuals, confidentiality for data

• Example policy: Bank account status (including
balance) known only to the account owner

• Leaking directly or via side channels
• Example: Manipulating the system to directly display

Bob’s bank balance to Alice
• Example: Determining Bob has an account at Bank A

according to shorter delay on login failure
https://www.youtube.com/watch?v=Nlf7YM71k5USecrecy vs. Privacy?

Anonymity

• A specific kind of privacy

• Example: Non-account holders should be able to
browse the bank site without being tracked
• Here the adversary is the bank
• The previous examples considered other

account holders as possible adversaries

Integrity
• Definition: Sensitive information not changed by

unauthorized parties or computations

• Example: Only the account owner can authorize
withdrawals from her account

• Violations of integrity can also be direct or indirect
• Example: Withdraw from the account yourself vs.

confusing the system into doing it

Availability
• Definition: A system is responsive to requests

• Example: A user may always access her account
for balance queries or withdrawals

• Denial of Service (DoS) attacks attempt to
compromise availability
• By busying a system with useless work
• Or cutting off network access

Supporting mechanisms
• Leslie Lamport’s Gold Standard defines mechanisms

provided by a system to enforce its requirements
• Authentication
• Authorization
• Audit

• The gold standard is both requirement and design
• The sorts of policies that are authorized determine the

authorization mechanism
• The sorts of users a system has determine how they

should be authenticated

Authentication
• Who/what is the subject of security policies?

• Need notion of identity and a way to connect action with
identity
• a.k.a. a principal

• How can system tell a user is who she says she is?
• What (only) she knows (e.g., password)
• What she is (e.g., biometric)
• What she has (e.g., smartphone, RSA token)
• Authentication mechanisms that employ more than one of these

factors are called multi-factor authentication
• E.g., password and one-time-use code

Authorization

• Defines when a principal may perform an action

• Example: Bob is authorized to access his own
account, but not Alice’s account

• Access-control policies define what actions might
be authorized
• May be role-based, user-based, etc.

Audit
• Retain enough information to determine the

circumstances of a breach or misbehavior (or
establish one did not occur)
• Often stored in log files
• Must be protected from tampering,
• Disallow access that might violate other policies

• Example: Every account-related action is logged
locally and mirrored at a separate site
• Only authorized bank employees can view log

Defining Security Requirements

• Many processes for deciding security requirements

• Example: General policy concerns
• Due to regulations/standards (HIPAA, SOX, etc.)
• Due organizational values (e.g., valuing privacy)

• Example: Policy arising from threat modeling (more later)
• Which attacks cause the greatest concern?

• Who are likely attackers, what are their goals and methods?
• Which attacks have already occurred?

• Within the organization, or elsewhere on related systems?

Abuse Cases

• Illustrate security requirements
• Describe what system should not do

• Example use case: System allows bank managers
to modify an account’s interest rate

• Example abuse case: User can spoof being a
manager and modify account interest rates

Threat Modeling

Design Threat Modeling

What is a threat model?

• Structured way of analyzing possible threats/vulns

• What is important to protect?

• What could go wrong?

• What capabilities might an attacker have?

Finding a good model
• Compare against similar systems

• What attacks does their design contend with?

• Understand past attacks and attack patterns
• How do they apply to your system?

• Challenge assumptions in your design
• What happens if assumption is false?

• What would a breach potentially cost you?
• How hard would it be to get rid of an assumption, allowing for a

stronger adversary?
• What would that development cost?

Approaches to threat modeling

• Focus on assets

• Focus on attackers

• Focus on engineering/system components

Focus on assets

• Pro: Prioritize what is important, valuable

• Con: Define asset?
• What you value? What an attacker values?

• Example: Center of Gravity theory

Focus on attackers
• Pro: Make attacker’s powers explicit

• Helps identify assumptions

• Pro: Focused on threats

• Con: Do you know everything the attacker knows?
• Get it wrong, whole model falls down

• Example: Persona Non Grata, attack trees

Example: Network User
• Can connect to a service via the network

• May be anonymous

• Can:
• Measure size, timing of requests, responses
• Run parallel sessions
• Provide malformed inputs or messages
• Drop or send extra messages

• Example attacks: SQL injection, XSS, CSRF, buffer overrun

Example: Snooping User
• Attacker on same network as other users

• e.g., Unencrypted Wi-Fi at coffee shop

• Can also
• Read/measure others’ messages
• Intercept, duplicate, and modify

• Example attacks: Session hijacking,
other data theft, side-channel attack,
denial of service

Example: Co-located User
• Attacker on same machine as other users

• E.g., malware installed on a user’s laptop

• Thus, can additionally
• Read/write user’s files (e.g., cookies) and

memory
• Snoop keypresses and other events
• Read/write the user’s display (e.g., to spoof)

• Example attacks: Password theft (and other
credentials/secrets)

Threat-driven Design
• Different attacker models will elicit different responses

• Network-only attackers implies message traffic is safe
• No need to encrypt communications
• This is what telnet remote login software assumed

• Snooping attackers means message traffic is visible
• So use encrypted wifi (link layer), encrypted network layer (IPsec),

or encrypted application layer (SSL)
• Which is most appropriate for your system?

• Co-located attacker can access local files, memory
• Cannot store unencrypted secrets, like passwords
• Worry about keyloggers as well (2nd factor?)

Focus on components
• Break system into components to analyze

• Pro: Can be comprehensive, checklist

• Con: Hard to do before you have a design

• Con: Hard to prioritize

• Example: Microsoft STRIDE

• Spoofing identity

• Tampering with data

• Repudiation

• Information disclosure

• Denial of service

• Elevation of privilege

Applying STRIDE

• Break system up into components / model
• e.g., data flow diagrams

• Go through STRIDE list for each component
independently

• Identify threats: who, what, why, how
• Level of impact

Exercise: Threat Model

• Consider a mobile payments app
• My phone, tied to my bank account / credit card
• Send / receive money from contacts

• Work up a (partial) threat model with STRIDE
• Key components: app, central server, network …

Bad Model = Bad Security
• Assumptions you make are potential holes the attacker can exploit

• E.g.: Assuming no snooping users no longer valid
• Prevalence of wi-fi networks in most deployments

• Other mistaken assumptions
• Assumption: Encrypted traffic carries no information

• Not true! By analyzing the size and distribution of messages,
you can infer application state

• Assumption: Timing channels carry little information
• Not true! Timing measurements of previous RSA

implementations could eventually reveal an SSL secret key

Now that we’ve identified threats …

What do we do about them?

• Prevent it

• Mitigate it

• Accept it?

• Transfer the risk?

Prevent

• Remove the entire threat
• Get rid of functionality that has risk?

Mitigate
• Limit effectiveness of attacks

• e.g., tampering: prevent via crypto integrity

• Many standard approaches

• (more on prevent, mitigate later)

Threat Mitigation examples

Spoofing Authentication

Tampering Integrity, authorization

Repudiation Logging, signatures

Info. Disclosure Authorization, encryption

Denial of Service Availability

Elevation of Priv. Authorization, isolation

Accept, transfer

• Organization can accept own risk
• Don’t “accept” risk for your users/customers?

• Transfer via explicit user acceptance?
• User interface, license agreement?

